Entendiendo el efecto de la agricultura itinerante (tala-quema-cultivo-abandono) en las propiedades físico-químicas del suelo en la región del Noroeste del Himalaya

Autores/as

  • Gaurav Mishra Rain Forest Research Institute, Jorhat, Assam, India – 785001., India
  • Krishna Giri Rain Forest Research Institute, Jorhat, Assam, India – 785001., India
  • Abhishek Jangir National Bureau of Soil Survey & Land Use Planning, Nagpur, India - 440033., India
  • Duraisamy Vasu National Bureau of Soil Survey & Land Use Planning, Nagpur, India - 440033., India
  • Jesús Rodrigo-Comino Departamento de Análisis Geográfico Regional y Geografía Física, Facultad de Filosofía y Letras, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada,, España https://orcid.org/0000-0002-4823-0871

DOI:

https://doi.org/10.14198/INGEO.17820

Palabras clave:

Gestion de tierras, sistemas agrícolas tradicionales, Jhum, Bosque, Índice de calidad del suelo.

Resumen

La agricultura itinerante (jhum), una práctica común para convertir tierras forestales en tierras agrícolas mediante la tala y quema, podría amenazar la provisión de servicios ecosistémicos. El presente estudio tuvo como objetivo evaluar el efecto de los ciclos de cultivo itinerante sobre la calidad del suelo en la región del noreste del Himalaya utilizando el mínimo número posible de propiedades del suelo. Para lograr este objetivo, se utilizó un enfoque de índice de calidad del suelo (SQI) y técnicas multivariadas para horizontes superficiales (0-30 cm) y subsuperficiales (30-70 cm) de suelos en las áreas de bosque, tierrascultivadas y barbecho. La mayor variabilidad entre los usos de la tierra se encontró para el contenido de arcilla, CO (carbono orgánico del suelo), Mg y K intercambiables, CEC (capacidad de intercambio catiónico) y relación Ca/Mg. Por el contrario, la menor variación se registró en densidad aparente (BD), porosidad y pH. Los resultados del análisis de componentes principales (ACP) mostraron BD, textura del suelo, nitrógeno disponible (Nav), fósforo disponible (Pav), potasio disponible (Kav), calcio (Ca) y sodio (Na) como los principales indicadores capaces de explicar la calidad del suelo. Los resultados indicaron que las capas superficiales de los suelos forestales tienen una menor calidad de suelo en comparación con las tierras cultivadas. Aunque las tierras cultivadas muestran una mejor calidad del suelo en comparación con los bosques, su cultivo continuo sin fertilización y el consiguiente agotamiento de los nutrientes del suelo pueden causar una degradación de la calidad del suelo como se observa en las tierras en barbecho. El uso de estos indicadores seleccionados en la evaluación de la calidad del suelo fue útil en términos de reducción en el costo y el tiempo de análisis.

Financiación

Rain Forest Research Institute, Indian Council of Forestry Research and Education (ICFRE).

Citas

Andrews, S.S., Flora, C.B., Mitchell, J.P., & Karlen, D.L. (2003). Grower’s perceptions and acceptance of soil quality indices. Geoderma, 114(3-4), 187–213. https://doi.org/10.1016/S0016-7061(03)00041-7

Andrews, S.S., Karlen, D.L., & Mitchell, J.P. (2002). A comparison of soil quality indices methods for vegetable production system in northern California. Agriculture, Ecosystems & Environment, 90(1), 25–45. https://doi.org/10.1016/S0167-8809(01)00174-8

Armenise, E., Redmile-Gordon, M.A., Stellacci, A.M., Ciccarese, A., Rubino, P. (2013). Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research, 130, 91–98. https://doi.org/10.1016/j.still.2013.02.013

Arunachalam, A. (2002). Dynamics of soil nutrients and microbial biomass during first year cropping in an 8-year jhum cycle. Nutrient Cycling in Agroecosystems, 64(3), 283–291. https://doi.org/10.1023/A:1021488621394

Assefa, F., Elias, E., Soromessa, T., & Ayele, G. T. (2020). Effect of Changes in Land-Use Management Practices on Soil Physicochemical Properties in Kabe Watershed, Ethiopia. Air, Soil and Water Research, 13, 1178622120939587. https://doi.org/10.1177/1178622120939587

Askari, M.S., & Holden, N.M. (2015). Quantitative soil quality indexing of temperate arable management systems. Soil and Tillage Research, 150, 57–67. https://doi.org/10.1016/j.still.2015.01.010

Askin, T., & Ozdemir, N. (2003). Soil bulk density as related to soil particle size distribution and organic matter content. Poljoprivreda/Agriculture, 9, 52–55

Ayoubi, S., Khormali, F., Sahrawat, K.L., & Rodrigues, de Lima, A.C. (2011). Assessing impacts of land use change on soil quality indicators in a loessial soil in Golestan Province Iran. Journal of Agricultural Science and Technology, 13(5), 727–742. http://oar.icrisat.org/id/eprint/1272

Bhaskar, B.P., Butte, P.S., & UtpalBrauah, S. (2005). Characterization of soils in the ‘Bil’ environs of Brahmaputra valley in Jorhat district, Assam for landuse interpretation. Journal of the Indian Society of Soil Science, 53, 3–10.

Blake, G.R., & Hartge, K.H. (1986). Bulk density. In A. Klute (Ed.), Methods of Soil Analysis Part 1, Physical and Mineralogical Methods, second ed. SSSA Book Series No. 5 (pp. 951–984). https://doi.org/10.1002/gea.3340050110

Bray, RH., & Kurtz, L.T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59, 39–46. http://dx.doi.org/10.1097/00010694-194501000-00006

Brejda, J.J., & Moorman, T.B. (2001). Identification and interpretation of regional soil quality factors for the central high plains of the Midwestern USA. In D.E. Stott, R.H. Mohtar and G.C. Steinhardt (Eds), Sustaining the global farm (pp. 535–540). Selected papers from the 10th International Soil Conservation Organisation Meeting held during May 24– 29 at Purdue University and the USDA-ARS National Soil Erosion Research Laboratory.

Caravaca, F., Figueroa, D., Barea, J.M., Azcón-Aguilar, C., Palenzuela, J., &Roldán, A. (2003). The role of relict vegetation in maintaining physical, chemical, and biological properties in an abandoned stipa–grass agroecosystem. Arid Land Research and Management, 17(2), 103–111. https://doi.org/10.1080/15324980301585

Ceccarelli, T., Bajocco, S., Luigi Perini, L., & Luca Salvati, L. (2014). Urbanisation and Land Take of High Quality Agricultural Soils—Exploring Long-term Land Use Changes and Land Capability in Northern Italy. International Journal of Environmental Research, 8(1), 181–192. https://doi.org/10.22059/ijer.2014.707

Chaplot, V., Bouahom, B., & Valentin, C. (2010). Soil organic carbon stocks in Laos: spatial variations and controlling factors. Global Change Biology, 16(4), 1380–1393. https://doi.org/10.1111/j.1365-2486.2009.02013.x

Chase, P., & Singh, O.P. (2014). Soil nutrients and fertility in three traditional land use systems of Khonoma, Nagaland, India. Resources and Environment, 4(4),181–189.

Chaudhari, P.R., Ahire, D.V., Ahire, V.D., Chkravarty, M., & Maity, S. (2013). Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. International Journal of Scientific and Research Publications, 3(2), 1–8.

Cho, K.M., Zoebisch, M.A., & Ranamukhaarachchi, S.L. (2004). Land-use dependent soil quality in the Lam PhraPhloeng watershed, northeast Thailand. In 13th International Soil Conservation Organisation Conference on “Conserving Soil and Water for Society: Sharing Solutions” (paper no. 119).Brisbane: ISCO. Retrieved from https://www.tucson.ars.ag.gov/isco/isco13/PAPERS%20A-E/CHO.pdf

Colantoni, A., Ferrara, C., Perini, L., & Salvati, L. (2015). Assessing trends in climate aridity and vulnerability to soil degradation in Italy. Ecological Indicators, 48, 599–604. https://doi.org/10.1016/j.ecolind.2014.09.031

Coyle, D. R., Nagendra, U. J., Taylor, M. K., Campbell, J. H., Cunard, C. E., Joslin, A. H., … Callaham Jr., M. A. (2017). Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action. Soil Biology and Biochemistry, 110, 116–133. https://doi.org/10.1016/j.soilbio.2017.03.008

Dalling, J.W., Heineman, K., Lopez, O.R, Wright, S.W., & Turner, B.L. (2016). Nutrient Availability in Tropical Rain Forests: The Paradigm of Phosphorus Limitation. In G. Goldstein & L. S. Santiago (Eds.), Tropical Tree Physiology (pp. 261-273). https://doi.org/10.1007/978-3-319-27422-5_12

Dikici, H., & Yilmaz, C.H. (2006). Peat fire effects on some properties of an artificially drained peatland. Journal of environmental Quality, 35, 866–870. https://doi.org/10.2134/jeq2005.0170

Dong, S.K., Wen, L., Li, Y.Y., Wang, X.X., Zhu, L., & Li, X.Y. (2012). Soil-quality effects of grassland degradation and restoration on the Qinghai-Tibetan Plateau. Soil Science Society of America Journal, 76(6), 2256–2264. https://doi.org/10.2136/sssaj2012.0092

Enaruvbe, G. O., & Atafo, O. P. (2019). Land cover transition and fragmentation of River Ogba catchment in Benin City, Nigeria. Sustainable Cities and Society, 45, 70–78. https://doi.org/10.1016/j.scs.2018.11.022

FAO. (1957). Shifting cultivation. Unasylva, 11, 9–11.

Granged, A.J.P., Zavala, L.M., Jordan, A., & Moreno, G.B., 2011. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: a 3-year study. Geoderma, 164, 85–94. https://doi.org/10.1016/j.geoderma.2011.05.017

Gbejewoh, O., Keesstra, S., & Blancquaert, E. (2021). The 3Ps (Profit, Planet, and People) of Sustainability amidst Climate Change: A South African Grape and Wine Perspective. Sustainability, 13(5), 2910. https://doi.org/10.3390/su13052910

Handayani, I.P. (2004). Soil quality changes following forest clearance in Bengkulu,Sumatra. Biotropia, 22, 15-28. https://doi.org/10.11598/btb.2004.0.22.205

Inoue, Y., Kiyono, Y., Asai, H., Ochiai, Y., Qi, J., Olioso, A., …., & Dounagsavanh, L. (2010). Assessing land-use and carbon stock in slash-and-burn ecosystems in tropical mountain of Laos based on time-series satellite images. International Journal of Applied Earth Observation and Geoinformation, 12(4), 287–297.

IPCC. (2007). In L. Bernstein, P. Bosch, O. Canzioni, O., Z. Chen, R. Christ, O. Davidson, ... &G. Yohe.(Eds.), Climate Change 2007: Synthesis report. An assessment of the intergovernmental panel on climate change. Valencia, Spain: IPCC. Retrieved from http://www.ipcc.ch/pdf/assessmentreport/ar4/syr/ar4_syr.pdf. http://www.ipcc.ch/publications_and_data/ar4/syr/e.

IUSS Working Group WRB. (2015). World reference base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. Rome: FAO. (World Soil Resources Reports No. 106).

Khaledian, Y., Brevik, E.C., Pereira, P., Cerdà, A., Fattah, M.A., & Tazikeh, H. (2017). Modeling soil cation exchange capacity in multiple countries. Catena, 158, 194–200. https://doi.org/10.1016/j.catena.2017.07.002

Khan, M.A., & Kamalakar, J. (2012). Physical, physico-chemical and chemical properties of soils of newly established Agro-biodiversity Park of Acharya NG Ranga Agricultural University, Hyderabad, Andhra Pradesh. International Journal of Farm Sciences, 2(2), 102-116.

Kholodov V.A., Yaroslavtseva N.V, Farkhodov Y.R., Belobrov V.P., Yudin S.A., Aydiev A.Ya., …, & Frid A.S. (2019). Changes in the Ratio of Aggregate Fractions in Humus Horizons of Chernozems in Response to the Type of Their Use. Eurasian Soil Science, 52(2), 162–170. https://doi.org/10.1134/S1064229319020066

Klute, A. (Ed.) (1986). Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods. In Soil Science Society of America Book Series, No. 5 (pp. 687–734). Madison, Wisconsin: Soil Science Society of America.

Leskiw, L.A. (1998) Land capability classification for forest ecosystem in the oil stands region. Edmonton: Alberia Environmental Protection.

Li, P., Zhang, T., Wang, X., & Yu, D. (2013). Development of biological soil quality indicator system for subtropical China. Soil and Tillage Research, 126, 112–118. https://doi.org/10.1016/j.still.2012.07.011

Liu, Z.J., Zhou, W., Shen, J.B, Li, S.T, Liang, G.Q., Wang, X.B., & Sun J-W. (2014). Soil quality assessment of acid sulfate paddy soils with different productivities in Guangdong Province, China. Journal of Integrative Agriculture, 13(1), 177–186. https://doi.org/10.1016/S2095-3119(13)60594-8

Lohbeck, M., Poorter, L., Martínez-Ramos, M., & Bongers, F. (2015). Biomass is the main driver of changes in ecosystem. Ecology, 96, 1242–1252. https://doi.org/10.1890/14-0472.1

Lungmuanaa, Singha, S.B., Vanthawmliana, Saha, S., Duttaa, S.K., Rambuatsaiha, Singh, A.R., & Boopathia, T. (2017). Impact of secondary forest fallow period on soil microbial biomass carbon and enzyme activity dynamics under shifting cultivation in North Eastern Hill region, India. Catena, 156, 10–17. https://doi.org/10.1016/j.catena.2017.03.017

Marzaioli, R., D’Ascoli, R., De Pascale, R.A., & Rutigliano, F.A. (2010). Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Applied Soil Ecology, 44(3), 205–212. https://doi.org/10.1016/j.apsoil.2009.12.007

Mendoza-Vega, J., & Messing, I. (2005). The influence of land use and fallow period on the properties of two calcareous soils in the humid tropics of southern Mexico. Catena, 60, 279–292. https://doi.org/10.1016/j.catena.2004.12.002

Mishra, G., Marzaioli, R., Giri, K., Borah, R., Dutta, A., & Jayaraj, R.S.C. (2017). Soil quality assessment under shifting cultivation and forests in Northeastern Himalaya of India. Archives of Agronomy and Soil Science, 63(10), 1355–1368. https://doi.org/10.1080/03650340.2017.1281390

Mishra, G., Jangir, A., & Francaviglia, R. (2019). Modeling soil organic carbon dynamics under shifting cultivation and forests using RothC model. Ecological Modeling, 396, 33-41. https://doi.org/10.1016/j.ecolmodel.2019.01.016,

Mishra, G., & Sarkar, A (2020). Studying the relationship between total organic carbon and soil carbon pools under different land management systems of Garo hills, Meghalaya. Journal of Environmental Management, 257, 1 March 2020, 10002. https://doi.org/10.1016/j.jenvman.2019.110002

Mulugeta, L., Karltun, E., & Olsson, M. (2005). Assessing soil chemical and physical property responses to deforestation and subsequent cultivation in smallholders farming system in Ethiopia. Agriculture, Ecosystems & Environment, 105(1-2),373–386. https://doi.org/10.1016/j.agee.2004.01.046

Nega, E., & Heluf, G. (2009). Influence of land use changes and soil depth on cation exchange capacity and contents of exchangeable bases in the soils of Senbat Watershed, western Ethiopia. Ethiopian Journal of Natural Resources, 11(2), 195–206.

NRC (National Research Council). (1981). Surface Mining: Soil, Coal and Society. New York: National Academy Press. https://doi.org/10.17226/19654

Patel, T., Karmakar, S., Sanjog, J., Kumar, S., & Chowdhury, A. (2013). Socio-economic and environmental changes with transition from shifting to settled cultivation in North-Eastern India: an ergonomics perspective. International Journal of Agricultural Science and Research, 3(2), 117–136.

Pierce, F.J., Larson, W.E., Dowdy, R.H., & Graham, W.A.P. (1983). Productivity of soils: assessing long-term changes due to erosion. Journal of Soil and Water Conservation, 38(1), 39–44.

Poorter, L., van der Sande, M.T., Thompson, J., Arets, E.J., Alarcón, A., Álvarez-Sánchez, J. … & Peña-Claros M. (2015). Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24(11), 1314–1328. https://doi.org/10.1111/geb.12364

Post, W.M., & Kwon, K.C. (2000). Soil carbon sequestration and land-use change: processes and potential. Global change biology, 6(3), 317−327. https://doi.org/10.1046/j.1365-2486.2000.00308.x

Pulido, M., Schnabel, S., Lavado-Contador, J.F., Miralles Mellado, I., Ortega &Pérez, R. (2013). Soil organic matter of Iberian open woodland rangelands as influenced by vegetation cover and land management. Catena, 109, 13–24. https://doi.org/10.1016/j.catena.2013.05.002

Pulido, M., Keshavarzi, A., Rodrigo-Comino, J., Schnabel, S., Contador, J. F. L., Gutiérrez, Á. G., … Cerdà, A. (2020). Developing scoring functions to assess soil quality at a regional scale in rangelands of SW Spain. Rev. Bras. Ciênc. Solo, 44. https://doi.org/10.36783/18069657rbcs20200090

Ramakrishnan, P.S., & Toky, O.P. (1981). Soil nutrient status of hill agroecosystems and recovery pattern after slash and burn agriculture (jhum) in north-eastern India. Plant and Soil, 60(1), 41–64. http://dx.doi.org/10.1007/BF02377111

Rao, P.S.C., & Wagenet, R.J. (1985). Spatial variability of field soils: methods for data analysis and consequences. Weed Science, 33(S2), 18–24. https://doi.org/10.1017/S0043174500083764

Rathore, S.S. (2008). Paradigm shift for enhancing rice productivity in Nagaland: Existing practices and their refinement. Himalayan Eco, 16(2), 17–25.

Rawls, R.J., Gimenez, D., & Grossman, R. (1998). Use of soil texture, bulk density, and slope of the water retention curve to predict saturated hydraulic conductivity. Transactions of the ASABE, 41, 983–988. https://doi.org/10.13031/2013.17270

Ribeiro Filho, A.A., Adams, C., & Murrieta, R.S.S. (2013). The impacts of shifting cultivation on tropical forest soil: a review. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas, 8(3), 693–727. https://doi.org/10.1590/S1981-81222013000300013

Rodrigo-Comino, J., Keshavarzi, A., Bagherzadeh, A., &Brevik, E.C., (2019). The use of multivariate statistical analysis and soil quality indices as tools to be included in regional management plans. A case study from the Mashhad Plain, Iran. Cuadernos de Investigación Geográfica, 45, 687–708. https://doi.org/10.18172/cig.3640

Rodrigo-Comino, J., Terol, E., Mora, G., Giménez-Morera, A., & Cerdà, A. (2020). Vicia sativa Roth. Can Reduce Soil and Water Losses in Recently Planted Vineyards (Vitis vinifera L.). Earth Systems and Environment, 4(4), 827–842. https://doi.org/10.1007/s41748-020-00191-5

Rodrigo-Comino, J., López-Vicente, M., Kumar, V., Rodríguez-Seijo, A., Valkó, O., Rojas, C., … Panagos, P. (2020). Soil Science Challenges in a New Era: A Transdisciplinary Overview of Relevant Topics. Air, Soil and Water Research, 13, 1178622120977491. https://doi.org/10.1177/1178622120977491

Saha, R., Chaudhary, R.S., & Somasundaram, J. (2012). Soil health management under hill agroecosystem of North East India. Applied and Environmental Soil Science, 1–9. https://doi.org/10.1155/2012/696174

Salehi, A., Wilhelmsson, E., & Soderberg, U. (2008). Land cover changes in a forested watershed, southern Zagros, Iran. Land Degradation & Development, 19(5), 542–553. https://doi.org/10.1002/ldr.860

Salvati, L., Bajocco, S., Ceccarelli, T., Zitti, M., & Perini, L. (2011). Towards a process-based evaluation of land vulnerability to soil degradation in Italy. Ecological Indicators, 11(5), 1216–1227. https://doi.org/10.1016/j.ecolind.2010.12.024

Sánchez-Navarro, A., Gil-Vázquez, J. M., Delgado-Iniesta, M. J., Marín-Sanleandro, P., Blanco-Bernardeau, A., & Ortiz-Silla, R. (2015). Establishing an index and identification of limiting parameters for characterizing soil quality in Mediterranean ecosystems. Catena, 131, 35–45. http://dx.doi.org/10.1016/j.catena.2015.02.023

Sarkar, D., Meitei, Ch.B., Baishya, L.K., Das, A., Ghosh, S., Chongloi, K.L., & Rajkhowa, D.J. (2015). Potential of fallow chronosequence in shifting cultivation to conserve soil organic carbon in northeast India. Catena, 135, 321–327. https://doi.org/10.1016/j.catena.2015.08.012

Schollenberger, C.J., & Simon, R.H., (1945). Determination of exchange capacity and exchangeable bases in soil. Ammonium acetate method. Soil Science, 59(1), 13–24. http://dx.doi.org/10.1097/00010694-194501000-00004

Sharma, C.M., Gairola, S., Ghildiyal, S.K., & Suyal S. (2010). Physical Properties of Soils in Relation to Forest Composition in Moist Temperate Valley Slopes of the Central Western Himalaya. Journal of Forest and Environmental Science, 26(2), 117–129.

Shukla, M.K., Lal, R., & Ebinger, M. (2006). Determining soil quality indicators by factor analysis. Soil and Tillage Research, 87(2), 194–204. https://doi.org/10.1016/j.still.2005.03.011

Singh, A.K., Bordoloi, L.J., Kumar, M., Hazarika, S., & Parmar, B. (2014). Land use impact on soil quality in eastern Himalayan region of India. Environmental Monitoring and Assessment, 186(4), 2013–2024. https://doi.org/10.1007/s10661-013-3514-7

Subbiah, B., & Asija, C.L. (1956). A rapid procedure for the estimation of available nitrogen in soils. Curr Sci., 25(8), 256–260.

Sulieman, M., Saeed, I., Hassaballa, A.,&Rodrigo-Comino, J. (2018). Modeling cation exchange capacity in multi geochronological-derived alluvium soils: An approach based on soil depth intervals. Catena, 167, 327–339. https://doi.org/10.1016/j.catena. 2018.05.001

Sumner, M.E., & Miller, W.P. (1996). Cation exchange capacity and exchange coefficients. In D.L. Sparks, A.L. Page, P.A. Helmke (Eds.), Methods of Soil Analysis Part 3, Chemical Methods (pp. 1201–1229). Madison, Wisconsin, USA: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3.c40

Tawnenga, Shankar, U., & Tripathi, R.S. (1997). Evaluating second year cropping on jhum fallows in Mizoram, north-eastern India: soil fertility. Journal of Biosciences, 22(5), 615–625. https://doi.org/10.1007/BF02703398

USDA Natural Resources Conservation Service. (2004). In R. Burc (Ed.), Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, Version 4. 0. (pp. 1031). Lincoln, NE: National Soil Survey Center.

Vasu, D., Singh, S. K., Ray, S.K., Duraisami, V.P., Tiwary, P., Chandran, P., …, & Anantwar S.G. (2016). Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70–79. https://doi.org/10.1016/j.geoderma.2016.07.010

Vinhal-Freitasa, I.C.., Correa, G.F., Wendling, B., Bobul’skác, L., & Ferreira, A.S. (2017). Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecological indicators, 74 , 182–190. https://doi.org/10.1016/j.ecolind.2016.11.020

Visser, S., Keesstra, S., Maas, G., de Cleen, M., & Molenaar, C. (2019). Soil as a Basis to Create Enabling Conditions for Transitions Towards Sustainable Land Management as a Key to Achieve the SDGs by 2030. Sustainability, 11, 6792. https://doi.org/10.3390/su11236792

Walkley, A., & Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. http://dx.doi.org/10.1097/00010694-193401000-00003

Yadav, P.K. (2013). Slash-and-burn agriculture in north-East India. Expert Opinion Environmental Biology, 2, 1–4. https://doi.org/10.4172/2325-9655.1000102

Descargas

Estadísticas

Estadísticas en RUA

Publicado

15-07-2021

Cómo citar

Mishra, G., Giri, K., Jangir, A., Vasu, D., & Rodrigo-Comino, J. (2021). Entendiendo el efecto de la agricultura itinerante (tala-quema-cultivo-abandono) en las propiedades físico-químicas del suelo en la región del Noroeste del Himalaya. Investigaciones Geográficas, (76), 243–261. https://doi.org/10.14198/INGEO.17820

Número

Sección

Artículos