Incidencia de Xylella fastidiosa en las Islas Baleares y distribución potencial en la península ibérica

Oliver Gutiérrez Hernández, Luis Ventura García Fernández

Resumen

Las invasiones biológicas constituyen una de las principales amenazas a la economía y a la biodiversidad relacionadas con el cambio global. Recientemente, ha irrumpido en las Islas Baleares un organismo fitopatógeno muy dañino: Xylella fastidiosa. Es una bacteria confinada en el xilema de las plantas que causa mortalidad sin curación en un gran número de cultivos leñosos de gran importancia, entre los cuales se encuentran el olivo, la vid, el almendro y los cítricos. En este trabajo abordamos una aproximación al estudio de la distribución del patógeno en las Islas Baleares y desarrollamos un modelo de distribución potencial de Xylella fastidiosa en la península ibérica calibrado con registros de presencia colectados en el archipiélago. Los resultados preliminares apuntan a una alta incidencia del Xylella fastidiosa en las Islas Baleares y proyectan una amplia distribución potencial del patógeno en la península ibérica, especialmente allí donde las temperaturas mínimas del mes más frío son más son más suaves.


Palabras clave

Especies invasoras; Riesgos biológicos; Kernel; Maxent.

Texto completo:

PDF (1,91 MB) Estadísticas

Referencias

Almeida, R. P. P. (2013). Xylella fastidiosa. Manual of Security Sensitive Microbes and Toxins, 841-850.

Almeida, R. P. P., & Purcell, A. H. (2003). Biological Traits of Xylella fastidiosa Strains from Grapes and Almonds. Applied and Environmental Microbiology, 69(12), 7447-7452. https://doi.org/10.1128/AEM.69.12.7447-7452.2003

Anderson, R. P. (2003). Real vs. artefactual absences in species distributions: tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela. Journal of Biogeography, 30(4), 591-605. https://doi.org/10.1046/j.1365-2699.2003.00867.x

Araújo, W. L., Marcon, J., Maccheroni, W., Van Elsas, J. D., Van Vuurde, J. W. L., & Azevedo, J. L. (2002). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology, 68(10), 4906-4914. https://doi.org/10.1128/AEM.68.10.4906-4914.2002

Arribas, I., Pérez, F., & Tortosa-Ausina, E. (2009). Measuring Globalization of International Trade: Theory and Evidence. World Development, 37(1), 127-145. https://doi.org/10.1016/j.worlddev.2008.03.009

Banks, N. C., Paini, D. R., Bayliss, K. L., & Hodda, M. (2015). The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecology Letters. https://doi.org/10.1111/ele.12397

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., … Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810-1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011

Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73-77. https://doi.org/10.1016/j.ecolmodel.2013.12.012

Bosso, L., Di Febbraro, M., Cristinzio, G., Zoina, A., & Russo, D. (2016). Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biological Invasions, 18(6), 1759-1768. https://doi.org/10.1007/s10530-016-1118-1

Bosso, L., Russo, D., Di Febbraro, M., Cristinzio, G., & Zoina, A. (2016). Potential distribution of Xylella fastidiosa in Italy: a maximum entropy model. Phytopathologia Mediterranea, 55(1), 62-72. http://dx.doi.org/10.14601/Phytopathol_Mediterr-16429

Capinha, C., Essl, F., Seebens, H., Moser, D., & Pereira, H. M. (2015). The dispersal of alien species redefines biogeography in the Anthropocene. Science, 348(6240), 1248-1251. https://doi.org/10.1126/science.aaa8913

Carlucci, A., Lops, F., Marchi, G., Mugnai, L., & Surico, G. (2013). Has Xylella fastidiosa “chosen” olive trees to establish in the mediterranean basin? Phytopathologia Mediterranea, 52(3), 541-544. http://dx.doi.org/10.14601/Phytopathol_Mediterr-13623

Casties, I., Seebens, H., & Briski, E. (2016). Importance of geographic origin for invasion success: A case study of the North and Baltic Seas versus the Great Lakes?St. Lawrence River region. Ecology and Evolution, 6(22), 8318-8329. https://doi.org/10.1002/ece3.2528

Colautti, R. I., & MacIsaac, H. I. (2004). A neutral terminology to define “invasive” species. Diversity and Distributions, 10(2), 135-141. https://doi.org/10.1111/j.1366-9516.2004.00061.x

European Food Safety Authority (EFSA) (2016). Update of a database of host plants of Xylella fastidiosa: 20 November 2015. EFSA Journal, 14(2). https://doi.org/10.2903/j.efsa.2016.4378

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Fick, S., & Hijmans, R. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38-49. https://doi.org/10.1017/S0376892997000088

Fourcade, Y., Engler, J. O., Rödder, D., & Secondi, J. (2014). Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PloS One, 9(5). https://doi.org/10.1371/journal.pone.0097122

Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I., & Thuiller, W. (2010). Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions, 16(3), 331-342. https://doi.org/10.1111/j.1472-4642.2010.00652.x

Hopkins, D. L. (1989). Xylella Fastidiosa: Xylem-Limited Bacterial Pathogen of Plants. Annual Review of Phytopathology, 27, 271-290. https://doi.org/10.1146/annurev.py.27.090189.001415

Instituto Geográfico Nacional (IGN). (2017). Información Geográfica de Referencia. Madrid: Centro Nacional de Información Geográfica, Instituto Geográfico Nacional, Ministerio de Fomento. Gobierno de España. Disponible en: http://centrodedescargas.cnig.es/

Janse, J. D., & Obradovic, A. (2010). Xylella fastidiosa: Its biology, diagnosis, control and risks. Journal of Plant Pathology. https://doi.org/10.4454/JPP.V92I1SUP.2504

Jiménez-Valverde, A., Lobo, J. M., & Hortal, J. (2008). Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 14(6), 885-890. https://doi.org/10.1111/j.1472-4642.2008.00496.x

Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragón, P., & Lobo, J. M. (2011). Use of niche models in invasive species risk assessments. Biological Invasions, 13(12), 2785-2797. https://doi.org/10.1007/s10530-011-9963-4

Larson, B. M. H., Kueffer, C., Brock, A., Edwards, P., Gross, M., Hall, M., … Wynne, B. (2013). Managing invasive species amidst high uncertainty and novelty. Trends in Ecology and Evolution, 28(5), 255-256. https://doi.org/10.1016/j.tree.2013.01.013

Lobo, J. M., Jiménez-Valverde, A., & Hortal, J. (2010). The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33(1), 103-114. https://doi.org/10.1111/j.1600-0587.2009.06039.x

Loconsole, G., Potere, O., Boscia, D., Altamura, G., Djelouah, K., Elbeaino, T., … Saponari, M. (2014). Detection of Xylella fastidiosa in olive trees by molecular and serological methods. Journal of Plant Pathology. https://doi.org/10.4454/JPP.V96I1.041

Lopes, J. R. S., Landa, B. B., y Fereres, A. (2014). A survey of potential insect vectors of the plant pathogenic bacterium Xylella fastidiosa in three regions of Spain. Spanish Journal of Agricultural Research, 12(3), 795-800. https://doi.org/10.5424/sjar/2014123-5613

Mang, S. M., Frisullo, S., Elshafie, H. S., & Camele, I. (2016). Diversity evaluation of Xylella fastidiosa from infected olive trees in Apulia (Southern Italy). Plant Pathology Journal, 32(2), 102-111. https://doi.org/10.5423/PPJ.OA.08.2015.0153

Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36(10), 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x

Montz, B. E., & Tobin, G. A. (2011). Natural hazards: An evolving tradition in applied geography. Applied Geography, 31(1), 1-4. https://doi.org/10.1016/j.apgeog.2010.06.005

Morales, N. S., Fernández, I. C., & Baca-González, V. (2017). MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ, 5, e3093. https://doi.org/10.7717/peerj.3093

Nunney, L., Ortiz, B., Russell, S. A., Sánchez, R. R., & Stouthamer, R. (2014). The complex biogeography of the plant pathogen xylella fastidiosa: Genetic evidence of introductions and subspecific introgression in central America. PLoS ONE. https://doi.org/10.1371/journal.pone.0112463

Olmo, D., Nieto, A., Adrover, F., Urbano, A., Beidas, O., Juan, A., Landa, B. B. (2017). First Detection of Xylella fastidiosa Infecting Cherry (Prunus avium) and Polygala myrtzfolia Plants, in Mallorca Island, Spain. Plan Disease, 101(10), 1820. https://doi.org/10.1094/PDIS-04-17-0590-PDN

Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science, 263(5147), 641-646. https://doi.org/10.1126/science.263.5147.641

Oreskes, N. (2010). Evaluation (Not Validation) Models Quantitative. Environmental Health, 106, 1453-1460.

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Bastos Araujo, M. (2011). Ecological niches and geographic distributions (Vol. 49). Princeton, NJ: Princeton University Press.

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2016). Opening the black box: an open-source release of Maxent. Ecography. https://doi.org/10.1111/ecog.02537

Phillips, S. J., & Dudi, M. (2008). Modeling of species distributions with Maxent : new extensions and a comprehensive evaluation. Ecography, 31, 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics. https://doi.org/10.1016/j.ecolecon.2004.10.002

Purcell, A. H. (1997). Xylella fastidiosa, a regional problem or global threat? Journal of Plant Pathology, 79(2), 99-105.

Redak, R. A., Purcell, A. H., Lopes, J. R. S., Blua, M. J., Mizell III, R. F., & Andersen, P. C. (2004). The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annual Review of Entomology, 49(1), 243-270. https://doi.org/10.1146/annurev.ento.49.061802.123403

Sección de Sanidad Vegetal (2017). Xylella fastidiosa. Mallorca: Sección de Sanidad Vegetal, Consejería de Medio Ambiente, Agricultura y Pesca. Gobierno de las Islas Baleares, Disponible en: http://www.caib.es/sites/sanitatvegetal

Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., Essl, F. (2017a). No saturation in the accumulation of alien species worldwide. Nature Communications, 8, 14435. https://doi.org/10.1038/ncomms14435

Seebens, H., Essl, F., y Blasius, B. (2017b). The intermediate distance hypothesis of biological invasions. Ecology Letters, 20(2), 158-165. https://doi.org/10.1111/ele.12715

Václavík, T., & Meentemeyer, R. K. (2012). Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions, 18(1), 73-83. https://doi.org/10.1111/j.1472-4642.2011.00854.x

van Kleunen, M., Dawson, W., Essl, F., Pergl, J., Winter, M., Weber, E., … Pyšek, P. (2015). Global exchange and accumulation of non-native plants. Nature, 525(7567), 100-103. https://doi.org/10.1038/nature14910

Vila, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarosik, V., Maron, J. L., … Pysek, P. (2011). Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14(7), 702-708. https://doi.org/10.1111/j.1461-0248.2011.01628.x

Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Ga uszka, A., … Wolfe, A. P. (2016). The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351(6269), 137-148. https://doi.org/10.1126/science.aad2622

Wells, J. M., Raju, B. C., Hung, H.-Y., Weisburg, W. G., Mandelco-Paul, L., & Brenner, D. J. (1987). Xylella fastidiosa gen. nov.: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. International Journal of Systematic Bacteriology, 37(2), 136-143. https://doi.org/10.1099/00207713-37-2-136

Zhu, G. P., & Peterson, A. T. (2017). Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biological Invasions, 19(9), 2519-2532. https://doi.org/10.1007/s10530-017-1460-y




DOI: https://doi.org/10.14198/INGEO2018.69.04





Copyright (c) 2018 Oliver Gutiérrez Hernández, Luis Ventura García Fernández

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.