Reconstrucción dendroclimática de la serie de precipitaciones en el Valle de Polaciones (Cantabria)

Víctor Lallana Llorente

Resumen

Se realiza una reconstrucción dendroclimática a partir de los datos de nueve cronologías del taxón Fagus sylvatica repartidas en Polaciones, un valle de la montaña central cantábrica. El trabajo se basa en una relación estadística fiable y replicable entre los datos climáticos de referencia de la Climatic Research Unit y las cronologías de anillos de crecimiento. Los resultados obtenidos en la relación crecimiento-clima para la precipitación resultan estadísticamente significativos para los meses entre abril a agosto, lo que permite reconstruir las variaciones interanuales de ésta entre 1798 y 2011, cubriendo así un periodo en el que no se dispone de registros instrumentales. Por otro lado, se elabora una serie de referencia para el área de análisis y se calculan los años favorables y desfavorables en el crecimiento de la especie. La búsqueda de coincidencias que ayuden a comprender el comportamiento de Fagus sylvatica en respuesta al clima en su ámbito meridional de distribución en Europa, lleva a estimar los años secos y húmedos obtenidos de la reconstrucción, que son puestos en relación con los crecimientos.


Palabras clave

Fagus sylvatica; dendroclimatología; reconstrucción climática; reconstrucción precipitación; Polaciones.

Texto completo:

PDF (2,35 MB) Estadísticas

Referencias

Agencia Estatal de Meteorología (AEMET) (2013). Datos termopluviométricos de la estación meteorológica de Uznayo (Cantabria). Madrid: Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, AEMET, Delegación Territorial en Cantabria.

Agencia Estatal de Meteorología (AEMET) (2016). Visor del Atlas climático de la Península y Baleares, 1971-2000. Agencia Estatal de Meteorología, Ministerio de Medio Ambiente y Rural y Marino, Madrid, Instituto de Meteorología de Portugal. Recuperado de http://agroclimap.aemet.es/#

Andreu, L., Gutierrez, E., Macias, M., Ribas, M., Bosch, O. y Camarero, J.J. (2007). Climate increases regional tree-growth variability in Iberian pine forests. Global Change Biol., 13, 804-815. https://doi.org/10.1111/j.1365-2486.2007.01322.x

Biondi, F. (1993). Climatic signals in tree-rings of Fagus sylvatica L. from the central Apennines, Italy. Acta Oecologica, 14, 57-71. Retrieved from https://www.researchgate.net/profile/Franco_Biondi/publication/279895651_Climatic_signals_in_tree_rings_of_Fagus_sylvatica_L_from_the_central_Apennines_Italy/links/5670624c08ae2b1f87ace379.pdf

Biondi, F. & Visani, S. (1996). Recent developments in the analysis of an Italian tree-ring network with emphasis on European beech (Fagus sylvatica L.). In J.S. Dean, D.M. Meko, T.W. Swetnam (eds.), Tree Rings, Environment and Humanity (pp. 713-725). Retrieved from http://wolfweb.unr.edu/homepage/fbiondi/Biondi&Visani1996.pdf

Bunn, A.G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26, 115-124. http://dx.doi.org/10.1016/j.dendro.2008.01.002

Bradley, R.S. (Ed.) (1990). Global change in the past. Colorado: University Corporation for Atmospheric Research (UCAR), Office for Interdisciplinary Earth Studies.

Briffa, K.R., Jones, P.D. & Schweingruber, F.H. (1988). Summer temperature patterns over Europe: a reconstruction from 1750 AD based on maximum latewood density indices of conifers. Quaternary Research, 30(1), 36-52. https://doi.org/10.1016/0033-5894(88)90086-5

Cai, Q., Liu, Y. & Tian, H. (2013). A dendroclimatic reconstruction of May–June mean temperature variation in the Heng Mounatins, north China, since 1767 AD. Quaternary international, 283, 3-10. https://doi.org/10.1016/j.quaint.2012.03.034

Camarero, J.J. & Gutiérrez, E. (2004). Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Climatic Change, 63(1-2), 181-200. https://doi.org/10.1023/B:CLIM.0000018507.71343.46

Case, R.A. & MacDonald, G.M. (1995). A dendroclimatic reconstruction of annual precipitation on the western Canadian prairies since AD 1505 from Pinus flexilis James. Quaternary Research, 44(2), 267-275. https://doi.org/10.1006/qres.1995.1071

Centro Nacional de Información Geográfica (CNIG) (2012). Modelo Digital del Terreno LIDAR. Madrid: Ministerio de Fomento, Instituto Geográfico Nacional, Centro Nacional de Información Geográfica (CNIG). Recuperado de http://centrodedescargas.cnig.es/CentroDescargas/index.jsp

Cook, E. & Kairiukstis, L. (1990). Methods of Dendrochronology: Applications in the Environmental Sciences. https://doi.org/10.1007/978-94-015-7879-0

Cook, E.R. & Kairiukstis, L.A. (Eds.) (2013). Methods of dendrochronology: applications in the environmental sciences. Springer Science and Business Media.

Cook, R.D. & Weisberg, S. (1994). An Introduction to Regression Graphics. https://doi.org/10.1002/

Colley, W.W. & Lohnes, P.R. (1971). Multivariate data analysis. New York: J. Wiley and Sons Inc.

CRU (2017). Climatic Research Unit. Retrieved from http://www.cru.uea.ac.uk/data

Čufar, K., Prislan, P. & Gričar, J. (2008). Cambial activity and wood formation in beech (Fagus sylvatica) during the 2006 growth season. Wood Research, (53), 1-11. Retrieved from http://eprints.gozdis.si/id/eprint/602

De Luis, M.D., Raventós, J., González-Hidalgo, J.C., Sánchez, J.R. & Cortina, J. (2000). Spatial analysis of rainfall trends in the region of Valencia (East Spain). International Journal of Climatology, 20(12), 1451-1469. Retrieved from http://www.unizar.es/mdla/publications_archivos/011_De%20Luis_et_al.,_2000_(IJC).pdf

De Luis, M.D., Brunetti, M., Gonzalez-Hidalgo, J. C., Longares, L. A. & Martin-Vide, J. (2010). Changes in seasonal precipitation in the Iberian Peninsula during 1946-2005. Global and Planetary Change, 74(1), 27-33. https://doi.org/10.1016/j.gloplacha.2010.06.006

Dittmar, C., Zech, W. & Elling, W. (2003). Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe: a dendroecological study. Forest Ecology and Management, 173, 63-78. http://dx.doi.org/10.1016/S0378-1127(01)00816-7

Di Filippo, A., Biondi, F., Čufar, K., De Luis, M., Grabner, M., Maugeri, M. & Piovesan, G. (2007). Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree‐ring network. Journal of Biogeography, 34(11), 1873-1892. https://doi.org/10.1111/j.1365-2699.2007.01747.x

Di Filippo, A., Biondi, F., Maugeri, M., Schirone, B. & Piovesan, G. (2012). Bioclimate and growth history affect beech lifespan in the Italian Alps and Apennines. Global change biology, 18(3), 960-972. https://doi.org/10.1111/j.1365-2486.2011.02617.x

Drobyshev, I., Övergaard, R., Saygin, I., Niklasson, M., Hickler, T., Karlsson, M. & Sykes, M.T. (2010). Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. Forest Ecology and Management, 259(11), 2160-2171. https://doi.org/10.1016/j.foreco.2010.01.037

Eilmann, B., Sterck, F., Wegner, L., de Vries, S.M., Von Arx, G., Mohren, G.M. & Sass-Klaassen, U. (2014). Wood structural differences between northern and southern beech provenances growing at a moderate site. Tree physiology, 34(8), 882-893. https://doi.org/10.1093/treephys/tpu069

Esper, J., Cook, E.R. & Schweingruber, F.H. (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295(5563), 2250-2253. https://doi.org/10.1126/science.1066208

Flower, A. & Smith, D.J. (2011). A dendroclimatic reconstruction of June-July mean temperature in the northern Canadian Rocky Mountains. Dendrochronologia, 29(1), 55-63. https://doi.org/10.1016/j.dendro.2010.10.001

Friedrichs, D.A., Trouet, V., Büntgen, U., Frank, D.C., Esper, J., Neuwirth, B. & Löffler, J. (2009). Species-specific climate sensitivity of tree growth in Central-West Germany. Trees, 23(4), 729-739. https://doi.org/10.1007/s00468-009-0315-2

Fritts, H.C. (2012). Tree Rings and Climate. London: Academic Press.

Fritts, H.C., Guiot, J., Gordon, G.A., & Schweingruber, F. (1990). Methods of calibration, verification, and reconstruction. In E.R., Cook & L.A. Kairiukstis (eds), Methods of Dendrochronology (pp. 163-217). https://doi.org/10.1007/978-94-015-7879-0_4

Giorgi, F., Bi, X. & Pal, J.S. (2004). Mean, interannual variability and trends in a regional climate change experiment over Europe, I. Present-day climate (1961–1990). Clim. Dynam., 22, 733-756. https://doi.org/10.1007/s00382-004-0467-0

Gómez-Manzanedo, M., Roig, S. & Reque, J.A. (2008). Silvicultural characterization of the Cantabrian beech forest: the influence of site conditions and anthropic uses. Forest Systems, 17(2), 168-177. http://dx.doi.org/10.5424/srf/2008172-01031

Gutiérrez, E. (1988). Dendroecological study of Fagus sylvatica L. in the Montseny mountains (Spain). Acta Oecologica. Oecología Plantarum, 9, 301-309.

Gutiérrez, E. (2009). La dendrocronología: métodos y aplicaciones. En X. Nieto i M.A. Cau, (Eds.), Arqueología nautica mediterrània. Monografies del CASC (pp. 309-322). Girona: Generalitat de Catalunya.

Griggs, C., Pearson, C., Manning, S.W. & Lorentzen, B. (2014). A 250‐year annual precipitation reconstruction and drought assessment for Cyprus from Pinus brutia Ten. tree‐rings. International Journal of Climatology, 34(8), 2702-2714. https://doi.org/10.1002/joc.3869

Grissino-Mayer, H.D. (2001). Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-ring research, 57(2), 205-221. Retrieved from http://hdl.handle.net/10150/251654

Harris, I.P.D.J., Jones, P.D., Osborn, T.J. & Lister, D.H. (2014). Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of Climatology, 34(3), 623-642. https://doi.org/10.1002/joc.3711

Herrera, J., Laskurain, N.A., Olano, J.M., Loidi, J., Escudero, A. y Olano, J.M. (2001). Sucesión secundaria en un abedular-hayedo en el Parque Natural de Urquiola (Vizcaya). Lazaroa, 22, 59-66. Recuperado de https://revistas.ucm.es/index.php/LAZA/article/viewFile/LAZA0101110059A/9322

Holmes, R.L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-ring bulletin, 43(1), 69-78. Retrieved from http://hdl.handle.net/10150/261223

Hughes, M.K., Swetnam, T.W., Diaz, H.F. (Eds). (2011). Dendroclimatology: Progress and Prospects. Springer: Dordrecht. https://doi.org/10.1007/978-1-4020-5725-0

Jump, A.S., Hunt, J.M. & Peñuelas, J. (2006). Rapid climate change-related growth decline at the southern range-ege of Fagus sylvatica. Global Change Biology, 12(11), 2163-2174. https://doi.org/10.1111/j.1365-2486.2006.01250.x

Jump, A.S., Hunt, J.M. & Peñuelas, J. (2007). Climate relationships of growth and establishment across the altitudinal range of Fagus sylvatica in the Montseny Mountains, northeast Spain. Ecoscience, 14(4), 507-518. https://doi.org/10.2980/1195-6860(2007)14[507:CROGAE]2.0.CO;2

Kharuk, V.I., Dvinskaya, M.L. & Ranson, K.J. (2013). Fire return intervals within the northern boundary of the larch forest in Central Siberia. International Journal of Wildland Fire, 22(2), 207-211. http://dx.doi.org/10.1071/WF11181

Lebourgeois, F. (2005). Approche dendroécologique de la sensibilité du Hêtre (Fagus sylvatica L.) au climat en France et en Europe. Revue Forestiere Francaise, 1, 33-50. https://doi.org/10.4267/2042/5021

Lebourgeois, F., Breda, N., Ulrich, E. & Granier, A. (2005). Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees, 19, 385-401. https://doi.org/10.1007/s00468-004-0397-9

Lebourgeois, F. & Mérian, P. (2012). Principes et méthodes de la dendrochronologie. (Doctoral dissertation, AgroParisTech). Retrieved from https://hal.archives-ouvertes.fr/cel-01627048

López-Moreno, J. I., El-Kenawy, A., Revuelto, J., Azorín-Molina, C., Morán-Tejeda, E., Lorenzo-Lacruz, J., ... & Vicente-Serrano, S.M. (2014). Observed trends and future projections for winter warm events in the Ebro basin, northeast Iberian Peninsula. Int. J. Climatol., 34, 49-60. https://doi.org/10.1002/joc.3665

Luckman, B.H. (1990). Mountain areas and global change: a view from the Canadian Rockies. Mountain Research and Development, 10(2), 183-195. https://doi.org/10.2307/3673428

Martinez del Castillo, E., Longares, L. A., Gričar, J., Prislan, P., Gil-Pelegrín, E., Čufar, K. & De Luis, M. (2016). Living on the edge: contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean conditions. Frontiers in Plant Science, 7, 370. https://doi.org/10.3389/fpls.2016.00370

McGuire, A.D., Ruess, R.W., Lloyd, A., Yarie, J., Clein, J.S. & Juday, G. P. (2010). Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: dendrochronological, demographic, and experimental perspectives. Canadian Journal of Forest Research, 40(7), 1197-1209. https://doi.org/10.1139/X09-206

Michelot, A., Bréda, N., Damesin, C. & Dufrêne, E. (2012a). Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. Forest ecology and management, 265, 161-171. https://doi.org/10.1016/j.foreco.2011.10.024

Michelot, A., Simard, S., Rathgeber, C., Dufrêne, E. & Damesin, C. (2012b). Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree physiology, 32(8), 1033-1045. https://doi.org/10.1093/treephys/tps052

Pena-Angulo, D., Cortesi, N., Brunetti, M., and González-Hidalgo, J.C. (2015). Spatial variability of maximum and minimum monthly temperature in Spain during 1981–2010 evaluated by correlation decay distance (CDD). Theor. Appl. Climatol., 122, 35-45. https://doi.org/10.1007/s00704-014-1277-x

Peñuelas, J., Ogaya, R., Boada, M.S. & Jump, A. (2007). Migration, invasion and decline: changes in recruitment and forest structure in a warming‐linked shift of European beech forest in Catalonia (NE Spain). Ecography, 30(6), 829-837. https://doi.org/10.1111/j.2007.0906-7590.05247.x

Piovesan, G., Bernabei, M., Di Filippo, A., Romagnoli, M. & Schirone, B. (2003). A long-term tree ring beech chronology from a high-elevation old-growth forest of Central Italy. Dendrochronologia, 21(1), 13-22. https://doi.org/10.1078/1125-7865-00036

Piovesan, G., Biondi, F., Bernabei, M., Di Filippo, A. & Schirone, B. (2005a). Spatial and altitudinal bioclimatic zones of the Italian Peninsula identified from a beech (Fagus sylvatica L.) tree-ring network. Acta Oecologica, 27, 197-210. http://dx.doi.org/10.1016/j.actao.2005.01.001

Piovesan, G., Di Filippo, A., Alessandrini, A., Biondi, F. & Schirone, B. (2005b). Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apennines. Journal of Vegetation Science, 16, 13-28. https://doi.org/10.1111/j.1654-1103.2005.tb02334.x

Piutti, E. & Cescatti, A., (1997). A quantitative analysis of the interactions between climatic response and intraspecific competition in European beech. Canadian Journal of Forest Research, 27, 277-284. https://doi.org/10.1139/x96-176

Prislan, P., Schmitt, U., Koch, G., Gričar, J. & Čufar, K. (2011). Seasonal ultrastructural changes in the cambial zone of beech (Fagus sylvatica) grown at two different altitudes. Iawa Journal, 32(4), 443-459. Retrieved from http://booksandjournals.brillonline.com/content/journals/10.1163/22941932-90000070

Prislan, P., Gričar, J., de Luis, M., Smith, K. T. & Čufar, K. (2013). Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and forest meteorology, 180, 142-151. http://dx.doi.org/10.1016/j.agrformet.2013.06.001

R Development Core Team (2011). R: A Language and Environment for Statistical Computing. Vienna: the R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/.

Raso, J.M. (1997). The recent evolution of mean annual temperatures in Spain. Advances in Historical Climatology in Spain. Vilassar de Mar: Oikos-tau. 201-223.

Robson, T.M., Rasztovits, E., Aphalo, P.J., Alia, R. & Aranda, I. (2013). Flushing phenology and fitness of European beech (Fagus sylvatica L.) provenances from a trial in La Rioja, Spain, segregate according to their climate of origin. Agricultural and forest meteorology, 180, 76-85. https://doi.org/10.1016/j.agrformet.2013.05.008

Rodrigo, F.S., Esteban-Parra, M.J., Pozo-Vázquez, D. & Castro-Diez, Y. (1999). A 500-year precipitation record in southern Spain, Int. J. Climatol, 19, 1233-1253. Retrieved from https://www.researchgate.net/profile/Fernando_Rodrigo2/publication/228553409_A_500year_precipitation_record_in_Southern_Spain/links/09e4150bf0af7d316d000000.pdf

Rozas, V. (2001). Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Annals of Forest Science, 58, 237-251. http://dx.doi.org/10.1051/forest:2001123

Rozas, V. (2006). Characterization and analysis of climatic signal in chronologies of Fagus sylvatica L. and Quercus robur L. in the central Cantabrian region, Spain. Forest Systems, 15(2), 182-196. Recuperado de https://www.researchgate.net/profile/Vicente_Rozas/publication/279479060_Characterization_and_analysis_of_climatic_signal_in_chronologies_of_Fagus_sylvatica_L_and_Quercus_robur_L_in_the_central_Cantabrian_region_Spain/links/5673c4f308aee7a4274589fa.pdf

Rozas, V., Camarero, J. J., Sangüesa-Barreda, G., Souto, M. & García-González, I. (2015). Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in northern Spain. Agricultural and Forest Meteorology, 201, 153-164. http://dx.doi.org/10.1016/j.agrformet.2014.11.012

Rubio, A., Blanco, A., Sanz, V. G., Sánchez, O. y Elena, R. (2003). Autoecología paramétrica de los hayedos de Castilla y León. Investigación agraria. Sistemas y recursos forestales, 12(1), 87-110. Recuperado de https://recyt.fecyt.es/index.php/IA/article/view/2485

Scharnweber, T., Manthey, M., Criegee, C., Bauwe, A., Schröder, C. & Wilmking, M. (2011). Drought matters-Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management, 262(6), 947-961. http://dx.doi.org/10.1016/j.foreco.2011.05.026

Scharnweber, T., Manthey, M. & Wilmking, M. (2013). Differential radial growth patterns between beech (Fagus sylvatica L.) and oak (Quercus robur L.) on periodically waterlogged soils. Tree physiology, 33(4), 425-437. https://doi.org/10.1093/treephys/tpt020

Schweingruber, F.H. (1990). Anatomy of European woods.An atlas for the identification of European trees, shrubs and dwarf shrubs. Berne: Paul Haupt.

Schweingruber, F.H. (2012). Trees and wood in dendrochronology: morphological, anatomical, and tree-ring analytical characteristics of trees frequently used in dendrochronology. Verlag, Berlin, Germany: Springer Science and Business Media.

Shi, C., Masson-Delmotte, V., Daux, V., Li, Z., Carré, M. & Moore, J.C. (2015). Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from Alpine treeline dendrochronology. Climate Dynamics, 45(5-6), 1367-1380. https://doi.org/10.1007/s00382-014-2386-z

Speer, J.H. (2010). Fundamentals of tree-ring research. Tucson: University of Arizona Press.

Stokes, M.A. & Smiley, T.L. (1968). An Introduction to Tree-ring Dating. Chicago: The University of Chicago Press.

Takahashi, K., Tokumitsu, Y. & Yasue, K. (2005). Climatic factors affecting the tree-ring width of Betula ermanii at the timberline on Mount Norikura, Central Japan. Ecological Research, 20(4), 445-451. https://doi.org/10.1007/s11284-005-0060-y

Takahashi, K., Okuhara, I., Tokumitsu, Y. & Yasue, K. (2011). Responses to climate by tree-ring widths and maximum latewood densities of two Abies species at upper and lower altitudinal distribution limits in central Japan. Trees, 25(4), 745-753. https://doi.org/10.1007/s00468-011-0552-z

Tardif, J., Camarero, J.J., Ribas, M. & Gutiérrez, E. (2003). Spatiotemporal variability in tree growth in the Central Pyrenees: climatic and site influences. Ecological Monographs, 73(2), 241-257. Retrieved from http://www.jstor.org/stable/3100016?seq=1#page_scan_tab_contents

Tegel, W., Seim, A., Hakelberg, D., Hoffmann, S., Panev, M., Westphal, T. & Büntgen, U. (2014). A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. European Journal of Forest Research, 133(1), 61-71. https://doi.org/10.1007/s10342-013-0737-7

Tejedor, E., De Luis, M., Cuadrat, J.M., Esper, J. & Saz, M.Á. (2016). Tree-ring-based drought reconstruction in the Iberian Range (east of Spain) since 1694. International journal of biometeorology, 60(3), 361-372. https://doi.org/10.1007/s00484-015-1033-7

Tejedor, E., Saz, M. A., Esper, J., Cuadrat, J. M., & Luis, M. (2017). Summer drought reconstruction in northeastern Spain inferred from a tree ring latewood network since 1734. Geophysical Research Letters, 44(16), 8492-8500. https://doi.org/10.1002/2017GL074748

Vavrcik, H., Gryc, V., Mensik, L. & Baar, J. (2013). Xylem formation in Fagus sylvatica during one growing season. Dendrobiology, 69, 69-75. http://dx.doi.org/10.12657/denbio.069.008

Vicente-Serrano, S.M. (2006). Spatial and temporal analysis of droughts in the Iberian Peninsula (1910–2000). Hydrolog. Sci. J., 51, 83-97. https://doi.org/10.1623/hysj.51.1.83

Wigley, T.M., Briffa, K.R. & Jones, P.D. (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of climate and Applied Meteorology, 23(2), 201-213. http://dx.doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

Yamaguchi, D. K. (1991). A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research, 21(3), 414-416. https://doi.org/10.1139/x91-053

Zhang, R.B., Yuan, Y.J., Wei, W.S., Gou, X.H., Yu, S.L., Shang, H.M., ... & Qin, L. (2015). Dendroclimatic reconstruction of autumn–winter mean minimum temperature in the eastern Tibetan Plateau since 1600 AD. Dendrochronologia, 33, 1-7. https://doi.org/10.1016/j.dendro.2014.09.001




DOI: https://doi.org/10.14198/INGEO2018.69.09





Copyright (c) 2018 Víctor Lallana Llorente

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.