¿Influyen tiempo y clima en la distribución del nuevo coronavirus (SARS CoV-2)? Una revisión desde una perspectiva biogeográfica
Resumen
Palabras clave
Referencias
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191
AL-Rousan, N., & Al-Najjar, H. (2020). Nowcasting and Forecasting the Spreading of Novel Coronavirus 2019-nCoV and Its Association with Weather Variables in 30 Chinese Provinces: A Case Study. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3537084
Altamimi, A., & Ahmed, A. E. (2019). Climate factors and incidence of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health. https://doi.org/10.1016/j.jiph.2019.11.011
Alvarez-Ramirez, J., & Meraz, M. (2020). Role of meteorological temperature and relative humidity in the January-February 2020 propagation of 2019-nCoV in Wuhan, China. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.19.20039164
Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 89(1), 44–48. https://doi.org/10.1038/s41591-020-0820-9
Araújo, M. B., Anderson, R. P., Barbosa, A. M., Beale, C. M., Dormann, C. F., Early, R., … & Rahbek, C. (2019). Standards for distribution models in biodiversity assessments. Nature Ecology and Evolution, 5(1), eaat4858. https://doi.org/10.1126/sciadv.aat4858
Araújo, M. B., & Naimi, B. (2020). Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. MedRxiv. https://doi.org/10.1101/2020.03.12.20034728
Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modeling. Ecology, 93(7), 1527–1539. https://doi.org/10.1890/11-1930.1
Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200(1–2), 1–19. https://doi.org/10.1016/j.ecolmodel.2006.07.005
Baker, R. E., Yang, W., Vecchi, G. A., Metcalf, C. J. E., & Grenfell, B. T. (2020). Susceptible supply limits the role of climate in the COVID-19 pandemic. MedRxiv. https://doi.org/10.1101/2020.04.03.20052787
Banks, N. C., Paini, D. R., Bayliss, K. L., & Hodda, M. (2015). The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecology Letters, 18(2), 188-199. https://doi.org/10.1111/ele.12397
Bannister-Tyrrell, M., Meyer, A., Faverjon, C., & Cameron, A. (2020). Preliminary evidence that higher temperatures are associated with lower incidence of COVID-19, for cases reported globally up to 29th February 2020. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.18.20036731
Bariotakis, M., Sourvinos, G., Castanas, E., & Pirintsos, S. A. (2020). Climatic influences on the worldwide spread of SARS-CoV-2. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.19.20038158
Bashir, M. F., Ma, B., Bilal, Komal, B., Bashir, M. A., Tan, D., & Bashir, M. (2020). Correlation between climate indicators and COVID-19 pandemic in New York, USA. Science of The Total Environment, 728, 138835. https://doi.org/10.1016/j.scitotenv.2020.138835
Bhattacharjee, V. (2020). Statistical investigation of relationship between spread of coronavirus disease (COVID-19) and environmental factors based on study of four mostly affected places of China and five mostly affected places of Italy. Arxiv. Recuperado de https://arxiv.org/abs/2003.11277
Brady, M. T., Evans, J., & Cuartas, J. (1990). Survival and disinfection of parainfluenza viruses on environmental surfaces. American Journal of Infection Control, 18(1), 18–23. https://doi.org/10.1016/0196-6553(90)90206-8
Brassey, J., Heneghan, C., Mahtani, K. R., & Aronson, J. K. (2020). COVID-19: Do weather conditions influence the transmission of the coronavirus (SARS-CoV-2)? Oxford COVID-19 Evidence Service. Recuperado de https://www.cebm.net/do-weather-conditions-influence-the-transmission-of-the-coronavirus-sars-cov-2/
Briz-Redón, A., & Serrano-Aroca, Á. (2020). A spatio-temporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain. Science of The Total Environment, 728, 138811. https://doi.org/10.1016/j.scitotenv.2020.138811
Bu, J., Peng, D.-D., Xiao, H., Yue, Q., Han, Y., Lin, Y., … & Chen, J. (2020). Analysis of meteorological conditions and prediction of epidemic trend of 2019-nCoV infection in 2020. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.02.13.20022715
Bukhari, Q., & Jameel, Y. (2020). Will Coronavirus Pandemic Diminish by Summer? SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3556998
Carlson, C. J., Chipperfield, J. D., Benito, B. M., Telford, R. J., & O’Hara, R. B. (2020). Species distribution models are inappropriate for COVID-19. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-020-1212-8
Chan, K. H., Peiris, J. S. M., Lam, S. Y., Poon, L. L. M., Yuen, K. Y., & Seto, W. H. (2011). The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Advances in Virology, 2011, 734690. https://doi.org/10.1155/2011/734690
Chen, B., Liang, H., Yuan, X., Hu, Y., Xu, M., & Zhao, Y. (2020). Roles of meteorological conditions in COVID-19 transmission on a worldwide scale. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.16.20037168
Chin, A., Chu, J., Perera, M., Hui, K., Yen, H., Chan, M., & Poon, L. (2020). Stability of SARS-CoV-2 in different environmental conditions. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.15.20036673
Chipperfield, J. D., Benito, B. M., O’Hara, R. B., Telford, R. J., & Carlson, C. J. (2020). On the inadequacy of species distribution models for modelling the spread of SARS-CoV-2 : response to Araújo and Naimi. EcoEvoRxiv. https://doi.org/10.32942/osf.io/mr6pn
Damgaard, C. (2019). A Critique of the Space-for-Time Substitution Practice in Community Ecology. Trends in Ecology and Evolution, 34(5), 416–421. https://doi.org/10.1016/j.tree.2019.01.013
Díaz, J., García, R., López, C., Linares, C., Tobías, A., & Prieto, L. (2005). Mortality impact of extreme winter temperatures. International Journal of Biometeorology, 49(3), 179–183. https://doi.org/10.1007/s00484-004-0224-4
Díaz, J., Jordán, A., García, R., López, C., Alberdi, J. C., Hernández, E., & Otero, A. (2002). Heat waves in Madrid 1986-1997: Effects on the health of the elderly. International Archives of Occupational and Environmental Health, 75(3), 163–170. https://doi.org/10.1007/s00420-001-0290-4
Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet, 3099(20), 19–20. https://doi.org/10.1016/S1473-3099(20)30120-1
Dormann, C. M., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., … & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x
Elith, J. (2017). Predicting distributions of invasive species. En Invasive Species: Risk Assessment and Management. https://doi.org/10.1017/9781139019606.006
Escobar, L. E., & Craft, M. E. (2016). Advances and limitations of disease biogeography using ecological niche modeling. Frontiers in Microbiology, 7, 1174. https://doi.org/10.3389/fmicb.2016.01174
Ficetola, G. F., & Rubolini, D. (2020). Climate Affects Global Patterns of Covid-19 Early Outbreak. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.23.20040501
Fick, S., & Hijmans, R. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
Fourcade, Y., Besnard, A. G., & Secondi, J. (2018). Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography, 27(2), 245–256. https://doi.org/10.1111/geb.12684
Franklin, J. (2009). Mapping Species Distributions: Spatial Inference and Prediction (Ecology, Biodiversity and Conservation). New York: Cambridge University Press.
García, L. V. (2004). Escaping the Bonferroni iron claw in ecological studies. Oikos, 105(3), 657–663. https://doi.org/10.1111/j.0030-1299.2004.13046.x
Gil, A., & Olcina, J. (2017). Tratado de Climatología. Alicante: Servicio de Publicaciones de la Universidad de Alicante.
Gregory, D., Johnston, R., Watts, M. J., & Whatmore, S. (2009). The Dictionary of Human Geography (5th Edition). En The Dictionary of Human Geography (p. 1052). West Sussex: Wiley-Blackwell.
Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat Suitability and Distribution Models: With Applications in R. https://doi.org/10.1017/9781139028271
Gupta, D. (2020). Effect of Ambient Temperature on COVID-19 Infection Rate. SSRN Electronic Journal. https://doi.org/http://dx.doi.org/10.2139/ssrn.3558470
Gutiérrez-Hernández, O. (2019). Aproximación multiescalar al estudio biogeográfico de los impactos del cambio global en la ecorregión mediterránea. La Biogeografía en el Antropoceno (Tesis doctoral). Universidad de Sevilla. Sevilla.
Gutiérrez-Hernández, O., Cámara Artigas, R., Senciales González, J. M., & García, L. V. (2018). Modelos predictivos en Biogeografía: aplicación para la modelización de nichos ecológicos en Geografía Física. Boletín de La Asociación de Geógrafos Españoles, 78, 88–126. https://doi.org/10.21138/bage.2395
Hall, C. B., Douglas, R. G., & Geiman, J. M. (1980). Possible transmission by fomites of respiratory syncytial virus. Journal of Infectious Diseases, 141(1), 98–102. https://doi.org/10.1093/infdis/141.1.98
Harbert, R., Cunningham, S. W., & Tessler, M. (2020). Spatial modeling cannot currently differentiate SARS-CoV-2 coronavirus and human distributions on the basis of climate in the United States. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.04.08.20057281
Holtmann, M., Jones, M., Shah, A., & Holtmann, G. (2020). Low ambient temperatures are associated with more rapid spread of COVID-19 in the early phase of the endemic. Environmental Research, 109625. https://doi.org/10.1016/j.envres.2020.109625
Hui, D. S., Azhar, E. I., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., … & Petersen, E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases, 91, 264–266. https://doi.org/10.1016/j.ijid.2020.01.009
ISCIII, & AEMET (2020). Primeros indicios de correlación entre variables meteorológicas y propagación del coronavirus y la COVID-19 en España. Recuperado de: https://www.isciii.es/Noticias/Noticias/Paginas/Noticias/AcuerdoISCIIIAEMETEstudioTemperaturasCOVID19.aspx
Jiménez-Valverde, A., Lobo, J. M., & Hortal, J. (2008). Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 14(6), 885–890. https://doi.org/10.1111/j.1472-4642.2008.00496.x
Johnson, E. E., Escobar, L. E., & Zambrana-Torrelio, C. (2019). An Ecological Framework for Modeling the Geography of Disease Transmission. Trends in Ecology and Evolution, 34(7), 655–668. https://doi.org/10.1016/j.tree.2019.03.004
Jüni, P., Rothenbühler, M., Bobos, P., Thorpe, K. E., da Costa, B. R., Fisman, D. N., … & Gesink, D. (2020). Impact of climate and public health interventions on the COVID-19 pandemic: A prospective cohort study. Canadian Medical Association Journal. https://doi.org/https://doi.org/10.1503/cmaj.200920
Kamel, M. N., & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. International Journal of Health Geographics, 19(1), 8. https://doi.org/10.1186/s12942-020-00202-8
Khanna, P. (2016). Connectography: Mapping the Future of Global Civilization. Nueva York: Penguin Random House.
Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., …& SARS Working Group (2003). A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. New England Journal of Medicine, 348(20), 1953–1966. https://doi.org/10.1056/NEJMoa030781
Lai, M. M. C., & Cavanagh, D. (1997). The Molecular Biology of Coronaviruses. Advances in virus research, 48, 1–100. https://doi.org/10.1016/S0065-3527(08)60286-9
Lam, T. T.-Y., Shum, M. H.-H., Zhu, H.-C., Tong, Y.-G., Ni, X.-B., Liao, Y.-S., … & Guan, Y. (2020). Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. https://doi.org/10.1038/s41586-020-2169-0
Lau, H., Khosrawipour, V., Kocbach, P., Mikolajczyk, A., Schubert, J., Bania, J., & Khosrawipour, T. (2020). The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. Journal of Travel Medicine, 001(714). https://doi.org/10.1093/jtm/taaa037
Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53, 173–189.
Li, X., Zai, J., Zhao, Q., Nie, Q., Li, Y., Foley, B. T., & Chaillon, A. (2020). Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. Journal of Medical Virology, 9(6), 602-611. https://doi.org/10.1002/jmv.25731
Lobo, J. M., Jiménez-Valverde, A., & Hortal, J. (2010). The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33(1), 103–114. https://doi.org/10.1111/j.1600-0587.2009.06039.x
Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
Lomolino, M. V., Riddle, B. A., & Whittaker, R. J. (2016). Biogeography: Biological Diversity Across Space and Time. Sunderland, Massachusetts: Oxford University Press.
Luo, W., Majumder, M. S., Liu, D., Poirier, C., Mandl, K. D., Lipsitch, M., & Santillana, M. (2020). The role of absolute humidity on transmission rates of the COVID-19 outbreak. MedRxiv. https://doi.org/10.1101/2020.02.12.20022467
Ma, Y., Zhao, Y., Liu, J., He, X., Wang, B., … & Luo, B. (2020). Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Science of the Total Environment, 724, 138226. https://doi.org/10.1016/j.scitotenv.2020.138226
Marston, S. A., Jones, J. P., & Woodward, K. (2005). Human geography without scale. Transactions of the Institute of British Geographers, 30(4), 416–432. https://doi.org/10.1111/j.1475-5661.2005.00180.x
Martinez-Alvarez, M., Jarde, A., Usuf, E., Brotherton, H., Bittaye, M., Samateh, A. L., … & Roca, A. (2020). COVID-19 pandemic in west Africa. The Lancet, 8(5), e631–e632. https://doi.org/10.1016/S2214-109X(20)30123-6
Martínez-Carpio, P. A. (2003). Biometeorología y bioclimatología clínica: Fundamentos, aplicaciones clínicas y estado actual de estas ciencias. Atención Primaria, 32(5), 300–305. https://doi.org/10.1157/13051599
Mecenas, P., Bastos, R., Vallinoto, A., & Normando, D. (2020). Effects of temperature and humidity on the spread of COVID-19: A systematic review. MedRxiv. https://doi.org/10.1101/2020.04.14.20064923
Miller, M. A., Viboud, C., Balinska, M., & Simonsen, L. (2009). The signature features of influenza pandemics - Implications for policy. New England Journal of Medicine, 360(25), 2595–2598. https://doi.org/10.1056/NEJMp0903906
MITECO. (2020). Primeros indicios de correlación entre variables meteorológicas y propagación de la enfermedad COVID-19 y del virus SARS-CoV-2 en España. Recuperado de https://www.miteco.gob.es/es/prensa/ultimas-noticias/primeros-indicios-de-correlación-entre-variables-meteorológicas-y-propagación-de-la-enfermedad-covid-19-y-del-virus-sars-cov-2-en-españa/tcm:30-508652
Murray, K. A., Olivero, J., Roche, B., Tiedt, S., & Guégan, J. F. (2018). Pathogeography: leveraging the biogeography of human infectious diseases for global health management. Ecography, 41(9), 1411–1427. https://doi.org/10.1111/ecog.03625
Murray, K. A., Preston, N., Allen, T., Zambrana-Torrelio, C., Hosseini, P. R., & Daszak, P. (2015). Global biogeography of human infectious diseases. Proceedings of the National Academy of Sciences, 112(41), 12746–12751. https://doi.org/10.1073/pnas.1507442112
Naimi, B., & Araújo, M. B. (2016). sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39(4), 368–375. https://doi.org/10.1111/ecog.01881
Neher, R. A., Dyrdak, R., Druelle, V., Hodcroft, E. B., & Albert, J. (2020). Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss Medical Weekly, 150, w20224. https://doi.org/10.4414/smw.2020.20224
Ng, O.-T., Marimuthu, K., Chia, P.-Y., Koh, V., Chiew, C. J., De Wang, L., … & Lee, V. J. M. (2020). SARS-CoV-2 Infection among Travelers Returning from Wuhan, China. New England Journal of Medicine, 6, NEJMc2003100. https://doi.org/10.1056/NEJMc2003100
Notari, A. (2020). Temperature dependence of COVID-19 transmission. MedRrxiv. https://doi.org/10.1101/2020.03.26.20044529
O’Reilly, K., Auzenbergs, M., Jafari, Y., Liu, Y., Flasche, S., & Lowe, R. (2020). Effective transmission across the globe: the role of climate in COVID-19 mitigation strategies. CMMID Repository, 3550308(20), 1–4. https://doi.org/10.1016/S2542-5196(20)30106-6
Oliveiros, B., Caramelo, L., Ferreira, N., & Caramelo, F. (2020). Role of temperature and humidity in the modulation of the doubling time of COVID-19 cases. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.05.20031872
Olivera, A. (1993). Geografía de la Salud. Madrid: Síntesis.
Omori, R., Mizumoto, K., & Chowell, G. (2020). Changes in testing rates could mask the novel coronavirus disease (COVID-19) growth rate. International Journal of Infectious Diseases, 94, 116–118. https://doi.org/10.1016/j.ijid.2020.04.021
Oto-Peralías, D. (2020). Regional correlations of COVID-19 in Spain. OSF Preprints. https://doi.org/https://doi.org/10.31219/osf.io/tjdgw
Otter, J. A., Donskey, C., Yezli, S., Douthwaite, S., Goldenberg, S. D., & Weber, D. J. (2016). Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. Journal of Hospital Infection, 92(3), 235–250. https://doi.org/10.1016/j.jhin.2015.08.027
Peiris, J. S. M., Lai, S. T., Poon, L. L. M., Guan, Y., Yam, L. Y. C., Lim, W., … & Yuen, K. Y. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet, 361(9366), 1319–1325. https://doi.org/10.1016/S0140-6736(03)13077-2
Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Bastos Araújo, M. (2011). Ecological niches and geographic distributions. Princeton, NJ: Princeton University Press.
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049
Pirtle, E. C., & Beran, G. W. (1991). Virus survival in the environment. Revue Scientifique et Technique (International Office of Epizootics), 10(3), 733–748. https://doi.org/10.20506/rst.10.3.570
Poirier, C., Luo, W., Majumder, M. S., Liu, D., Mandl, K., Mooring, T., & Santillana, M. (2020). The Role of Environmental Factors on Transmission Rates of the COVID-19 Outbreak: An Initial Assessment in Two Spatial Scales. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3552677
Price, R. H. M., Graham, C., & Ramalingam, S. (2019). Association between viral seasonality and meteorological factors. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-018-37481-y
Pulliam, H. R. (2000). On the relationship between niche and distribution. Ecology Letters, 3(4), 349–361. https://doi.org/10.1046/j.1461-0248.2000.00143.x
Reeves, T., Samy, A. M., & Peterson, A. T. (2015). MERS-CoV geography and ecology in the Middle East: Analyses of reported camel exposures and a preliminary risk map. BMC Research Notes, 8(1), 1–7. https://doi.org/10.1186/s13104-015-1789-1
Sajadi, M. M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-Wilhelm, F., & Amoroso, A. (2020). Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3550308
Sebastian, M. D., Holger, P. D., Annemarie, P. D., Kortenbusch, M., Jindrich, P. D., & Denisa, M. S. (2020). Correspondence Evidence of SARS-CoV-2 Infection in Returning Travelers from Wuhan, China. The New England Journal of Medicine. Recuperado de https://www.nejm.org/doi/pdf/10.1056/NEJMc2001899?articleTools=true
Shaman, J., Goldstein, E., & Lipsitch, M. (2011). Absolute humidity and pandemic versus epidemic influenza. American Journal of Epidemiology, 173(2), 127–135. https://doi.org/10.1093/aje/kwq347
Shi, P., Dong, Y., Yan, H., Li, X., Zhao, C., Liu, W., Xi, S. (2020). The impact of temperature and absolute humidity on the coronavirus disease 2019 (COVID-19) outbreak - evidence from China. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.22.20038919
Soberón, J., Osorio-Olvera, L., & Peterson, T. (2017). Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Revista Mexicana de Biodiversidad, 88(2), 437–441. https://doi.org/10.1016/j.rmb.2017.03.011
Soberón, J., & Peterson, A. (2005). Interpretation of Models of Fundamental Ecological Niches and Species Distributional Areas. Biodiversity Informatics, 2, 1–10. https://doi.org/10.17161/bi.v2i0.4
Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H. D., & Rappuoli, R. (2003). SARS — beginning to understand a new virus. Nature Reviews Microbiology, 1(3), 209–218. https://doi.org/10.1038/nrmicro775
Tan, J., Mu, L., Huang, J., Yu, S., Chen, B., & Yin, J. (2005). An initial investigation of the association between the SARS outbreak and weather: With the view of the environmental temperature and its variation. Journal of Epidemiology and Community Health, 59(3), 186–192. https://doi.org/10.1136/jech.2004.020180
Tobler, W. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234–240.
Pacheco, M. T., Mota, J. F., Matos Medina, A., Scalco, P., Terribile, L. C., Vilela, B., ... & Dobrovolski, R. (2020). Exponential phase of covid19 expansion is not driven by climate at global scale. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.04.02.20050773
Václavík, T., & Meentemeyer, R. K. (2012). Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions, 18(1), 73–83. https://doi.org/10.1111/j.1472-4642.2011.00854.x
van Doremalen, N., Bushmaker, T., & Munster, V. J. (2013). Stability of middle east respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance, 18(38), 1–4. https://doi.org/10.2807/1560-7917.ES2013.18.38.20590
van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., … & Munster, V. J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine, 82,1564-1567. https://doi.org/10.1056/NEJMc2004973
Wang, J., Tang, K., Feng, K., & Lv, W. (2020). High Temperature and High Humidity Reduce the Transmission of COVID-19. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3551767
WHO (2020a). Emergencies preparedness, response. Pneumonia of unknown origin – China. Disease outbreak news. Recuperado de https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/
WHO (2020b). How are new infectious diseases named?. Recuperado de https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
WHO (2020c). Novel Coronavirus (COVID-19). Situation. Recuperado de https://experience.arcgis.com/experience/685d0ace521648f8a5beeeee1b9125cd
WHO (2020d). Responding to community spread of COVID-19. Interim guidance.
Worby, C. J., Chaves, S. S., Wallinga, J., Lipsitch, M., Finelli, L., & Goldstein, E. (2015). On the relative role of different age groups in influenza epidemics. Epidemics, 13, 10–16. https://doi.org/10.1016/j.epidem.2015.04.003
Wu, D., Wu, T., Liu, Q., & Yang, Z. (2020). The SARS-CoV-2 outbreak: what we know. International Journal of Infectious Diseases, 94(2020), 44–48 . https://doi.org/10.1016/J.IJID.2020.03.004
Xie, J., & Zhu, Y. (2020). Association between ambient temperature and COVID-19 infection in 122 cities from China. Science of the Total Environment, 724, 138201. https://doi.org/10.1016/j.scitotenv.2020.138201
Zhu, G., & Peterson, A. T. (2014). Potential geographic distribution of the novel avian-origin influenza A (H7N9) virus. PLoS ONE, 9(4), 2–7. https://doi.org/10.1371/journal.pone.0093390
DOI: https://doi.org/10.14198/INGEO2020.GHVG
Copyright (c) 2020 Oliver Gutiérrez-Hernández, Luis V. García

Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.