Investigaciones Geográficas

Precipitación extrema en la Puna del Desierto de Atacama: ¿Cómo gestionar la incertidumbre actual y futura?

Pablo Sarricolea, Hugo Romero-Aravena, Roberto Serrano-Notivoli, Oliver Meseguer-Ruiz, Vincent Dubreuil, Beatriz M. Funatsu

DOI: https://doi.org/10.14198/INGEO.22852

Resumen

Chile es uno de los países de América Latina más afectados por el cambio climático. Existe un elevado nivel de incertidumbre respecto a la variabilidad de las precipitaciones y sus proyecciones en muchas de sus regiones. Ello plantea desafíos para su caracterización climática y para definir estrategias para reducir los riesgos asociados. Se estudia la Puna del Desierto de Atacama, paisaje andino de altura que bordea las tierras áridas por el lado este, y que concentran las principales minas de cobre y litio a escala mundial, y donde existen escasas observaciones meteorológicas, con datos perdidos y proyecciones de poca fiabilidad. Es por ello que se construyó una base diaria de precipitación de 35 estaciones con el fin de evaluar algunos índices extremos que permitan establecer cambios entre 1981-2017, además de interpolaciones espaciales basadas en la topografía. Se concluye que la mayoría de las estaciones meteorológicas no presenta tendencias significativas de cambio, destacando días extremadamente húmedos (R99p), días húmedos (RR) y días húmedos consecutivos (CWD). El índice con mayor cantidad de estaciones con tendencia es CDD, que muestra un incremento de los días consecutivos secos. Uno de los principales aportes de esta investigación fue ampliar el número de observaciones y generar mapas de la distribución espacial de los índices de extremos. Nos quedan preguntas abiertas respecto a convivir con la incertidumbre, y alcanzar desafíos de mantener los registros para aumentar los niveles de certeza de los cambios climáticos.

Palabras clave

Incertidumbre; Índices de extremos; Salar de San Pedro de Atacama; Tendencias de precipitación.

Texto completo:

PDF (English) Estadísticas

Referencias

Amigo, J., & Ramírez, C. (1998). A bioclimatic classification of Chile: woodland communities in the temperate zone. Plant ecology, 136(1), 9-26. https://doi.org/10.1023/A:1009714201917

Antal, A., Guerreiro, P. M., & Cheval, S. (2021). Comparison of spatial interpolation methods for estimating the precipitation distribution in Portugal. Theoretical and Applied Climatology, 145(3), 1193-1206. https://doi.org/10.1007/s00704-021-03675-0

Babidge, S. (2019). Sustaining ignorance: the uncertainties of groundwater and its extraction in the Salar de Atacama, northern Chile. Journal of the Royal Anthropological Institute, 25(1), 83-102. https://doi.org/10.1111/1467-9655.12965

Bolívar, D., Guerra, L., & Martínez, F. (2022). Socio-environmental Harms in Chile Under the Restorative Justice Lens: The Role of the State. In The Palgrave Handbook of Environmental Restorative Justice (pp. 563-591). Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-04223-2_22

Broad, R., & Cavanagh, J. (2015). Poorer countries and the environment: friends or foes?. World Development, 72, 419-431. https://doi.org/10.1016/j.worlddev.2015.03.007

Curry, J. A., & Webster, P. J. (2011). Climate science and the uncertainty monster. Bulletin of the American Meteorological Society, 92(12), 1667-1682. https://doi.org/10.1175/2011BAMS3139.1

Ferreiro-Lera, G. B., Penas, Á., & del Río, S. (2022). Bioclimatic drought trend study through the application of the ombroxeric index. A case study : the province of León (Spain). Journal of Maps, 1-11. https://doi.org/10.1080/17445647.2022.2101949

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2 : new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086

Fuders, F., & Pastén, R. (2020). Allocative efficiency and property rights in ecological economics: Why we need to distinguish between man-made capital and natural resources. In Ecological Economic and Socio Ecological Strategies for Forest Conservation (pp. 43-56). Springer, Cham. https://doi.org/10.1007/978-3-030-35379-7_3

González-Pérez, A., Álvarez-Esteban, R., Penas, Á., & del Río, S. (2022). Analysis of Recent Mean Temperature Trends and Relationships with Teleconnection Patterns in California (US). Applied Sciences, 12(12), 5831. https://doi.org/10.3390/app12125831

Greve, P., Kahil, T., Mochizuki, J., Schinko, T., Satoh, Y., Burek, P., Fischer ,G., Tramberend, S., Burtscher, R., Langan, S., & Wada, Y. (2018). Global assessment of water challenges under uncertainty in water scarcity projections. Nature Sustainability, 1(9), 486-494. https://doi.org/10.1038/s41893-018-0134-9

Hallegatte, S., Rogelj, J., Allen, M., Clarke, L., Edenhofer, O., Field, C. B., … & Van Vuuren, D. P. (2016). Mapping the climate change challenge. Nature Climate Change, 6(7), 663-668. https://doi.org/10.1038/nclimate3057

Houston, J. (2006). Variability of precipitation in the Atacama Desert : its causes and hydrological impact. International Journal of Climatology : A Journal of the Royal Meteorological Society, 26(15), 2181-2198. https://doi.org/10.1002/joc.1359

Jaksic, F., Marquet, P., & González, H. (1997). Una perspectiva ecológica sobre el uso del agua en el Norte Grande. Estudios públicos, 68, 171-195. http://biblioteca.cehum.org/handle/123456789/563

Karl, T. R., Nicholls, N., & Ghazi, A. (1999). Clivar/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary. In Weather and climate extremes (pp. 3-7). Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9265-9_2

Kay, A. L., Davies, H. N., Bell, V. A., & Jones, R. G. (2009). Comparison of uncertainty sources for climate change impacts: flood frequency in England. Climatic change, 92(1), 41-63. https://doi.org/10.1007/s10584-008-9471-4

Kendall, M. G. (1975). Rank Correlation Methods 4th edn. Charles Griffin.

Khan, N., Shahid, S., Ahmed, K., Ismail, T., Nawaz, N., & Son, M. (2018). Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets. Water, 10(12), 1793. https://doi.org/10.3390/w10121793

Latorre, C., Rech, J., Quade, J., Holmgren, C., Placzek, C., Maldonado, A., Vuille, M., & Rylander, K. (2005). Late quaternary history of the Atacama Desert. National Museum of Australia Press.

Liepert, B. G., & Previdi, M. (2012). Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models. Environmental Research Letters, 7(1), 014006. https://iopscience.iop.org/article/10.1088/1748-9326/8/2/029401

Liu, W., & Agusdinata, D. B. (2020). Interdependencies of lithium mining and communities sustainability in Salar de Atacama, Chile. Journal of Cleaner Production, 260, 120838. https://doi.org/10.1016/j.jclepro.2020.120838

Liu, W., & Agusdinata, D. B. (2021). Dynamics of local impacts in low-carbon transition: Agent-based modeling of lithium mining-community-aquifer interactions in Salar de Atacama, Chile. The Extractive Industries and Society, 8(3), 100927. https://doi.org/10.1016/j.exis.2021.100927

Lizama-Allende, K., Rámila, C. D. P., Leiva, E., Guerra, P., & Ayala, J. (2022). Evaluation of surface water quality in basins of the Chilean Altiplano-Puna and implications for water treatment and monitoring. Environmental Monitoring and Assessment, 194(12), 1-28. https://doi.org/10.1007/s10661-022-10628-1

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259. https://doi.org/10.2307/1907187

Meseguer-Ruiz, O., Ponce-Philimon, P. I., Guijarro, J. A., & Sarricolea, P. (2019). Spatial distribution and trends of different precipitation variability indices based on daily data in Northern Chile between 1966 and 2015. International Journal of Climatology, 39(12), 4595-4610. https://doi.org/10.1002/joc.6089

Meseguer-Ruiz, O., Cortesi, N., Guijarro, J. A., & Sarricolea, P. (2020). Weathegionames linked to daily precipitation anomalies in Northern Chile. Atmospheric Research, 236, 104802. https://doi.org/10.1016/j.atmosres.2019.104802

Moran, R. (2005). Technical review of the El Dorado mine project environmental impact assessment (EIA). El Salvador. https://remwater.org/wp-content/uploads/2015/10/Moran-Robert-E.-2005-Technical-Review-of-the-El-Dorado-Mine-Project-Environmental-Impact-Assessment-EIA-El-Salvador.pdf

Muñoz, A. A., Klock-Barría, K., Alvarez-Garreton, C., Aguilera-Betti, I., González-Reyes, Á., Lastra, J. A., ... & LeQuesne, C. (2020). Water crisis in Petorca Basin, Chile: The combined effects of a mega-drought and water management. Water, 12(3), 648. https://doi.org/10.3390/w12030648

Nordhaus, W. (2019). Climate change: The ultimate challenge for economics. American Economic Review, 109(6), 1991-2014. https://doi.org/10.1257/aer.109.6.1991

Odell, S. D., Bebbington, A., & Frey, K. E. (2018). Mining and climate cha nge: A review and framework for analysis. The extractive industries and society, 5(1), 201-214. https://doi.org/10.1016/j.exis.2017.12.004

Orihuela, J. C. (2021). The environmentalization of mining in Colombia, Chile, and Peru: A comparative analysis of green state formation. The Extractive Industries and Society, 8(4), 100829. https://doi.org/10.1016/j.exis.2020.10.012

Palmer, T., & Stevens, B. (2019). The scientific challenge of understanding and estimating climate change. Proceedings of the National Academy of Sciences, 116(49), 24390-24395. https://doi.org/10.1073/pnas.1906691116

Pathak, A. A., & Dodamani, B. M. (2020). Trend analysis of rainfall, rainy days and drou ght: a case study of Ghataprabha River Basin, India. Modeling Earth Systems and Environment, 6(3), 1357-1372. https://doi.org/10.1007/s40808-020-00798-7

Peterson, T., Folland, C., Gruza, G., Hogg, W., Mokssit, A., & Plummer, N. (2001). Report on the activities of the working group on climate change detection and related rapporteurs (p. 143). World Meteorological Organization.

Ploberger, C. (2020). Risk management, climate change related risks, and the precautionary principle. Climate Action, 783-791. https://link.springer.com/content/pdf/10.1007/978-3-319-95885-9_114.pdf

Prieto, M. (2015). Privatizing water in the Chilean Andes: the case of Las Vegas de Chiu-Chiu. Mountain Research and Development, 35(3), 220-229. https://doi.org/10.1659/MRD-JOURNAL-D-14-00033.1

Romero, H., & Opazo, D. (2019). El ayllu como territorio de vida en las comunidades Altoandinas y su relación con la configuración espacial de la minería en el Desierto y Salar de Atacama, Norte de Chile. AMBIENTES: Revista de Geografia e Ecologia Política, 1(1), 38-38. https://doi.org/10.48075/amb.v1i1.22685

Ruiz-Vásquez, M., Arias, P. A., Martínez, J. A., & Espinoza, J. C. (2020). Effects of Amazon basin deforestation on regional atmospheric circulation and water vapor transport towards tropical South America. Climate Dynamics, 54(9), 4169-4189. https://doi.org/10.1007/s00382-020-05223-4

Sarricolea, P., Meseguer Ruiz, O., & Romero-Aravena, H. (2017). Tendencias de la precipitación en el norte grande de Chile y su relación con las proyecciones de cambio climático. Diálogo andino, (54), 41-50. http://dx.doi.org/10.4067/S0719-26812017000300041

Schulz, N., Boisier, J. P., & Aceituno, P. (2012). Climate change along the arid coast of northern Chile. International Journal of Climatology, 32(12), 1803-1814. https://doi.org/10.1002/joc.2395

Schumacher, V., Justino, F., Fernández, A., Meseguer-Ruiz, O., Sarricolea, P., Comin, A., ... & Althoff, D. (2020). Comparison between observations and gridded data sets over complex terrain in the Chilean Andes: Precipitation and temperature. International Journal of Climatology, 40(12), 5266-5288. https://doi.org/10.1002/joc.6518

Segura, H., Espinoza, J. C., Junquas, C., Lebel, T., Vuille, M., & Condom, T. (2022). Extreme austral winter precipitation events over the South-American Altiplano: regional atmospheric features. Climate Dynamics, 1-18. https://doi.org/10.1007/s00382-022-06240-1

Sen, P. K. (1968). Estimates of the regression coefficient based on Kend’ll’s tau. Journal of the American statistical association, 63(324), 1379-1389. https://www.tandfonline.com/doi/abs/10.1080/01621459.1968.10480934

Serrano-Notivoli, R., de Luis, M., & Beguería, S. (2017). An R package for daily precipitation climate series reconstruction. Environmental modelling & software, 89, 190-195. https://doi.org/10.1016/j.envsoft.2016.11.005

Simolo, C., Brunetti, M., Maugeri, M., & Nanni, T. (2010). Improving estimation of missing values in daily precipitation series by a probability density function-preserving approach. International Journal of Climatology, 30(10), 1564-1576. https://doi.org/10.1002/joc.1992

Souvignet, M., Oyarzún, R., Verbist, K. M., Gaese, H., & Heinrich, J. (2012). Hydro-meteorological trends in semi-arid north-central Chile (29–32 S): Water resources implications for a fragile Andean region. Hydrological Sciences Journal, 57(3), 479-495. https://doi.org/10.1080/02626667.2012.665607

Spalding, R. J. (2013). Transnational networks and national action: El Salvador’s antimining movement. In Transnational Activism and National Movements in Latin America (pp. 39-71). Routledge.

Sulca, J. C., Vuille, M., & Dong, B. (2022). Interdecadal variability of the austral summer precipitation over the Central Andes. Frontiers in Earth Science, 1621. https://doi.org/10.3389/feart.2022.954954

Yazdandoost, F., Moradian, S., Izadi, A., & Aghakouchak, A. (2021). Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmospheric Research, 250, 105369. https://doi.org/10.1016/j.atmosres.2020.105369

Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z., & Wei, L. (2021). AR6 Climate Change 2021: The Physical Science Basis.




DOI: https://doi.org/10.14198/INGEO.22852





Copyright (c) 2023 Pablo Sarricolea, Hugo Romero, Roberto Serrano-Notivoli, Oliver Meseguer-Ruiz, Vincent Dubreuil, Beatriz M. Funatsu

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.