Análisis comparativo de datos de precipitación de sensores remotos y estaciones de superficie en la cuenca del río Paracatu, Cerrado brasileño
DOI:
https://doi.org/10.14198/INGEO.29047Palabras clave:
CHIRPS, evaluación de desempeño, seguridad hídrica, precipitación, gestión ambiental, BrasilResumen
La estimación precisa de la precipitación es esencial para la gestión de los recursos hídricos, especialmente en regiones tropicales donde la variabilidad espacial y temporal de las lluvias presenta desafíos significativos. En áreas con cobertura limitada de estaciones terrestres, los productos satelitales, como el Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), se han vuelto particularmente valiosos. Este estudio evaluó los datos de CHIRPS en comparación con los registros de estaciones de superficie en la cuenca del río Paracatu, en el Cerrado brasileño, durante el período de 2010 a 2023, empleando un enfoque de “punto a píxel”. Entre los análisis estadísticos, utilizamos métricas comúnmente aplicadas en estudios de precipitación, como el coeficiente de correlación de Pearson (CC), el sesgo relativo (BIAS), el coeficiente de determinación (R²) y la raíz del error cuadrático medio (RMSE). Los coeficientes de determinación mensuales (R²) variaron entre 0.77 y 0.89, lo que refleja la capacidad de CHIRPS para captar los patrones de precipitación en esta escala. Sin embargo, su precisión disminuyó al estimar la precipitación anual total, lo que pone en evidencia algunas limitaciones. A pesar de estos desafíos, CHIRPS sigue siendo una herramienta valiosa para complementar los datos de superficie a escala mensual, aunque las discrepancias son más pronunciadas durante los períodos de lluvias intensas y en los acumulados anuales. Investigaciones futuras deberían explorar la integración de productos adicionales de teledetección y evaluar cómo las condiciones climáticas cambiantes afectan las estimaciones de precipitación.
Citas
Alsilibe, F., Bene, K., Bilal, G., Alghafli, K., & Shi, X. (2023). Accuracy Assessment and Validation of Multi-Source CHIRPS Precipitation Estimates for Water Resource Management in the Barada Basin, Syria. Remote Sensing, 15(7), 1778. https://doi.org/10.3390/rs15071778
Alsumaiti, T. S., Hussein, K. A., Ghebreyesus, D. T., Petchprayoon, P., Sharif, H. O., & Abdalati, W. (2024). Development of Intensity–Duration–Frequency (IDF) Curves over the United Arab Emirates (UAE) Using CHIRPS Satellite-Based Precipitation Products. Remote Sensing, 16(1), 27. https://doi.org/10.3390/rs16010027
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. D. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische zeitschrift, 22(6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507
Araújo, C. B. C., Filho, F. A. S., Júnior, L. M. A., & Silveira, C. S. (2020). Previsão Sazonal De Vazões Para A Bacia Do Orós (Ceará, Brasil) Utilizando Redes Neurais E A Técnica De Reamostragem Dos K-Vizinhos. Revista brasileira de meteorologia, 32, 197-207. https://doi.org/10.1590/0102-7786351015
Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J. D., & Thinh, N. X. (2018). Temporal and Spatial Evaluation of Satellite Rainfall Estimates Over Different Regions in latin-america. Atmospheric Research, 213, 34-50. https://doi.org/10.1016/j.atmosres.2018.05.011
Bai, L., Shi, C., Li, L., Yang, Y., & Wu, J. (2018). Accuracy of CHIRPS Satellite-Rainfall Products over Mainland China. Remote Sensing, 10(3), 362. https://doi.org/10.3390/rs10030362
Bhattarai, S., & Talchabhadel, R. (2024). Comparative Analysis of Satellite-Based Precipitation Data across the CONUS and Hawaii: Identifying Optimal Satellite Performance. Remote Sensing, 16(16), 3058. https://doi.org/10.3390/rs16163058
Boluwade, A. (2024). Spatial-Temporal Evaluation of Satellite-Derived Rainfall Estimations for Water Resource Applications in the Upper Congo River Basin. Remote Sensing, 16(20), 3868. https://doi.org/10.3390/rs16203868
Caparoci Nogueira, S. M., Moreira, M. A., & Lordelo Volpato, M. M. (2018). Evaluating Precipitation Estimates from Eta, TRMM and CHRIPS Data in the South-Southeast Region of Minas Gerais State—Brazil. Remote Sensing, 10(2), 313. https://doi.org/10.3390/rs10020313
Cattani, E., Ferguglia, O., Merino, A., & Levizzani, V. (2021). Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017. Remote Sensing, 13(21), 4419. https://doi.org/10.3390/rs13214419
Christian, J. I., Martin, E. R., Basara, J. B., Furtado, J. C., Otkin, J. A., Lowman, L. E. L., Hunt, E. D., Mishra, V., & Xiao, X. (2023). Global projections of flash drought show increased risk in a warming climate. Communications Earth & Environment, 4, 165. https://doi.org/10.1038/s43247-023-00826-1
Datti, A. D., Zeng, G., Tarnavsky, E., Cornforth, R., Pappenberger, F., Abdullahi, B. A., & Onyejuruwa, A. (2024). Evaluation of Satellite-Based Rainfall Estimates against Rain Gauge Observations across Agro-Climatic Zones of Nigeria, West Africa. Remote Sensing, 16(10), 1755. https://doi.org/10.3390/rs16101755
Estrela-Segrelles, C., Pérez-Martín, M. Á., & Wang, Q. J. (2024). Adapting Water Resources Management to Climate Change in Water-Stressed River Basins-Júcar River Basin Case. Water, 16(7), 1004. https://doi.org/10.3390/w16071004
Ferreira, M. L., Tormen, G.P., & De Andrade, A.M. (2025). Climate change and irrigation expansion in Northwest Minas Gerais, Brazil: the need for hydroclimatic monitoring. Int. J. Environ. Sci. Technol., 22, 5495-5512. https://doi.org/10.1007/s13762-024-05994-x
Freitas, A. A., Drumond, A., Carvalho, V. S. B., Reboita, M. S., Silva, B. C., & Uvo, C. B. (2022). Drought Assessment in São Francisco River Basin, Brazil: Characterization through SPI and Associated Anomalous Climate Patterns. Atmosphere, 13(1), 41. https://doi.org/10.3390/atmos13010041
Funk, C. C., Peterson, P. J., Landsfeld, M. F., Pedreros, D. H., Verdin, J. P., Rowland, J. D., Romero, B. E., Husak, G. J., Michaelsen, J. C., & Verdin, A. P. (2014). A quasi-global precipitation time series for drought monitoring. U.S. Geological Survey Data Series. https://dx.doi.org/10.3133/ds832
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data, 2, 150066. https://doi.org/10.1038/sdata.2015.66
Ghorbanian, A., Mohammadzadeh, A., Jamali, S., & Duan, Z. (2022). Performance Evaluation of Six Gridded Precipitation Products throughout Iran Using Ground Observations over the Last Two Decades (2000-2020). Remote Sensing, 14(15), 3783. https://doi.org/10.3390/rs14153783
Gu, H., Shen, D., Xiao, S., Zhang, C., Bai, F., & Yu, F. (2024). Evaluation of Daily and Hourly Performance of Multi-Source Satellite Precipitation Products in China’s Nine Water Resource Regions. Remote Sensing, 16(9), 1516. https://doi.org/10.3390/rs16091516.
Guimarães, D. P., & Landau, E. C. (2020). Georreferenciamento dos pivôs centrais de irrigação no Brasil: ano base 2020. Portal Embrapa.
Han, H., Abitew, T. A., Park, S., Green, C. H. M., & Jeong, J. (2023). Spatiotemporal evaluation of satellite-based precipitation products in the Colorado river basin. Journal of Hydrometeorology, 24, 1739-1754. https://doi.org/10.1175/JHM-D-23-0003.1
Hsu, J., Huang, W. -R., Liu, P. -Y., & Li, X. (2021). Validation of CHIRPS Precipitation Estimates over Taiwan at Multiple Timescales. Remote Sensing, 13(2), 254. https://doi.org/10.3390/rs13020254
Júnior, A. F. L., Zanella, M. E., & Sales, M. C. L. (2023). Avaliação do desempenho da precipitação estimada pelo CHIRPS para o Estado do Ceará, Brasil. Revista Brasileira de Climatologia, 32, 363-382. https://doi.org/10.55761/abclima.v32i19.16143
Li, X., Zhang, J., Feng, Q., Liu, W., Ao, Y., Zhu, M., Yang, L., Yin, X., Li, Y., & Han, T. (2023). Exploring the Best-Matching Precipitation Traits in Four Long-Term Mainstream Products over China from 1981 to 2020. Remote Sensing, 15(13), 3355. https://doi.org/10.3390/rs15133355
Lima, E. D. P., Andrade, R. G., Sediyama, G. C., & Bof, L. H. N. (2019). Temporal-spatial control of the difference between precipitation and evapotranspiration in Paracatu sub-basins. International Journal of Advanced Engineering Research and Science, 6. https://dx.doi.org/10.22161/ijaers.6.6.70
Loures Ferreira, M., Medeiros de Andrade, A., Esdras Santiago, W., & Praes de Almeida, R. (2024). Análisis de la disponibilidad y demanda hídrica en una zona con alta demanda de riego por pivote central en Brasil. Revista De Geografía Norte Grande, (88). https://doi.org/10.4067/S0718-34022024000200109
Mianabadi, A., Salari, K., & Pourmohamad, Y. (2022). Drought Monitoring Using The Long-Term CHIRPS Precipitation Over Southeastern Iran. Applied Water Science, 12, 183. https://doi.org/10.1007/s13201-022-01705-4
Mouafik, M., Fouad, M., & El Aboudi, A. (2024). Machine Learning Methods for Predicting Argania spinosa Crop Yield and Leaf Area Index: A Combined Drought Index Approach from Multisource Remote Sensing Data. AgriEngineering, 6(3), 2283-2305. https://doi.org/10.3390/agriengineering6030134
Nadeem, M. U., Ghanim, A. A. J., Anjum, M. N., Shangguan, D., Rasool, G., Irfan, M., Niazi, U. M., & Hassan, S. (2022). Multiscale Ground Validation of Satellite and Reanalysis Precipitation Products over Diverse Climatic and Topographic Conditions. Remote Sensing, 14(18), 4680. https://doi.org/10.3390/rs14184680
Nicholson, S. E., & Klotter, D. A. (2021). Assessing the Reliability of Satellite and Reanalysis Estimates of Rainfall in Equatorial Africa. Remote Sensing, 13(18), 3609. https://doi.org/10.3390/rs13183609
Ogbu, K. N., Hounguè, N. R., Gbode, I. E., & Tischbein, B. (2020). Performance Evaluation of Satellite-Based Rainfall Products over Nigeria. Climate, 8(10), 103. https://doi.org/10.3390/cli8100103
Paredes-Trejo, F. J., Barbosa, H. A., & Lakshmi Kumar, T. V. (2017). Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. Journal of arid environments, 139, 26-40. https://doi.org/10.1016/j.jaridenv.2016.12.009
Paredes-Trejo, F., Alves Barbosa, H., Venkata Lakshmi Kumar, T., Kumar Thakur, M., & de Oliveira Buriti, C. (2021). Assessment of the CHIRPS-Based Satellite Precipitation Estimates. IntechOpen. http://dx.doi.org/10.5772/intechopen.91472
Rachidi, S., El Mazoudi, E. H., El Alami, J., Jadoud, M., & Er-Raki, S. (2023). Assessment and Comparison of Satellite-Based Rainfall Products: Validation by Hydrological Modeling Using ANN in a Semi-Arid Zone. Water, 15(11), 1997. https://doi.org/10.3390/w15111997
Reboita, M. S., Rodrigues, M., Silva, L. F., & Alves, M. A. (2015). Climate aspects in Minas Gerais state. Revista Brasileira de Climatologia, 17, 2237-8642. http://dx.doi.org/10.5380/abclima.v17i0.41493
Reboita, M. S., Gan, M. A., Rocha, R. P. D., & Ambrizzi, T. (2010). Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista brasileira de meteorologia, 25, 185-204. https://doi.org/10.1590/S0102-77862010000200004
Saldanha, C. B., Radin, B., Cardoso, M. A. G., Rippel, M. L., Fonseca, L. L. D., & Rodriguez, F. (2015). Comparação dos dados de precipitação gerados pelo GPCP vs Observados para o estado do Rio Grande do Sul. Revista Brasileira de Meteorologia, 30, 415-422. https://doi.org/10.1590/0102-778620140139
Sakib, S., Ghebreyesus, D., & Sharif, HO (2021). Avaliação de desempenho de produtos IMERG GPM durante a tempestade tropical Imelda. Atmosphere, 12(6), 687. https://doi.org/10.3390/atmos12060687
Silva, L. d. D. d. J., Mahmoud, M., González-Rodríguez, L., Mohammed, S., Rodríguez-López, L., & Arias, M. I. A. (2023). Assessment of the IMERG Early-Run Precipitation Estimates over South American Country of Chile. Remote Sensing, 15(3), 573. https://doi.org/10.3390/rs15030573
Tórnio, C. A. A., Kede, M. L. F. M., & de Souza, L. S. (2024). Avaliação do desempenho das estimativas de precipitação do produto CHIRPS para os municípios de São Gonçalo e Niterói (RJ). Revista Brasileira de Climatologia, 34, 79-103. https://doi.org/10.55761/abclima.v34i20.17317
Upadhyay, S., Silwal, P., Prajapati, R., Talchabhadel, R., Shrestha, S., Duwal, S., & Lakhe, H. (2022). Evaluating Magnitude Agreement and Occurrence Consistency of CHIRPS Product with Ground-Based Observations over Medium-Sized River Basins in Nepal. Hydrology, 9(8), 146. https://doi.org/10.3390/hydrology9080146
Wiwoho, B. S., Astuti, I. S., Alfarizi, I. A. G., & Sucahyo, H. R. (2021). Validation of Three Daily Satellite Rainfall Products in a Humid Tropic Watershed, Brantas, Indonesia: Implications to Land Characteristics and Hydrological Modelling. Hydrology, 8(4), 154. https://doi.org/10.3390/hydrology8040154
Xu, W., Zou, Y., Zhang, G., & Linderman, M. (2015). A comparison among spatial interpolation techniques for daily rainfall data in Sichuan Province, China. International Journal of Climatology, 35(10). https://doi.org/10.1002/joc.4180
Yang, Y., & Luo, Y. (2014). Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China. Theor Appl Climatol, 118, 429–445. https://doi.org/10.1007/s00704-013-1072-0
Ye, X., Guo, Y., Wang, Z., Liang, L., & Tian, J. (2022). Extensive Evaluation of Four Satellite Precipitation Products and Their Hydrologic Applications over the Yarlung Zangbo River. Remote Sensing, 14(14), 3350. https://doi.org/10.3390/rs14143350
Zeng, Z., Wu, W., Peñuelas, J., Li, Y., Jiao, W., Li, Z., Ren, X., Wang, K., & Ge, Q. (2023). Increased risk of flash droughts with raised concurrent hot and dry extremes under global warming. npj Climate and Atmospheric Science, 6, 134. https://doi.org/10.1038/s41612-023-00468-2
Zhang, M., Leon, C. de, & Migliaccio, K. (2018). Evaluation and comparison of interpolated gauge rainfall data and gridded rainfall data in Florida, USA. Hydrological Sciences Journal, 63(4), 561–582. https://doi.org/10.1080/02626667.2018.1444767
Zhu, W., & Liang, K. (2024). Applicability of Precipitation Products in the Endorheic Basin of the Yellow River under Multi-Scale in Time and Modality. Remote Sensing, 16(5), 872. https://doi.org/10.3390/rs16050872
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Maycow Douglas de Oliveira Silva, Paulo Sérgio Cardoso Batista, Sharrine Omari D. de Oliveira Marra; Marinaldo Loures Ferreira

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores/as que publican en Investigaciones Geográficas están de acuerdo en los siguientes términos:
- Derechos de autor: La autoría conserva los derechos sobre sus trabajos, aunque cede de forma no exclusiva los derechos de explotación (reproducción, edición, distribución, comunicación pública y exhibición) a la revista. Los autores/as son, por tanto, libres de hacer acuerdos contractuales adicionales independientes para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, alojarlo en un repositorio institucional o publicarlo en un libro), siempre que medie un reconocimiento de su publicación inicial en esta revista.
- Manifiesto: Los autores aseguran que Investigaciones Geográficas es el primer medio que publica su obra y garantizan que mientras se encuentra en fase de valoración y posible publicación en nuestra revista no se ha enviado, ni enviará a otros medios.
- Licencia: Los trabajos se publican bajo una licencia Creative Commons de Atribución-NoComercial-CompartirIgual 4.0 Internacional, salvo que se indique lo contrario. Esto es que se puede compartir y adaptar el material siempre que no se use con fines comerciales, se distribuya bajo la misma licencia del original, se realice atribución a la autoría y al primer medio que publica y se proporcione un enlace a la licencia. Igualmente hay que indicar si se han realizado cambios.
- Política de autoarchivo: Se permite y alienta a los autores/as a difundir electrónicamente el artículo final publicado (versión del editor) en Investigaciones Geográficas (como en repositorios institucionales, en su página web, ...) con el fin de lograr intercambios productivos y conseguir que la obra logre mayor citación (véase The Effect of Open Access, en inglés).