Dinámica de las riberas en un entorno fluvial semiárido: Un estudio del valle inferior del Wadi Tamri (Atlas Atlántico, Marruecos)
Palabras clave:
erosión de las riberas, vulnerabilidad geomorfopedológica, fragilidad, terrazas bajas, Wadi Tamri, MarruecosResumen
Las riberas de los ríos en zonas mediterráneas semiáridas son áreas en constante cambio, modeladas por la naturaleza y la intervención humana. El valle inferior del Wadi Tamri, con su amplia llanura aluvial, terrazas frágiles y depósitos marino-continentales mixtos, es un paisaje fluvial semiárido típico, que es vulnerable a inundaciones. Este artículo examina la dinámica y vulnerabilidad de las terrazas bajas históricas del Wadi Tamri, así como la evolución de su paisaje entre 1984 y 2024, dos fechas que marcan hitos importantes en el estudio de la zona. Este estudio examina la morfología fluvial y la regresión de las riberas en relación con los sedimentos, la vegetación, el clima y las variaciones del caudal. Las imágenes de satélite y los estudios de campo permiten identificar las zonas vulnerables y evaluar las transformaciones del cauce y las riberas tras periodos húmedos. La fragilidad y el retroceso de las riberas pueden evaluarse mediante diversos métodos, como pruebas de pala, agregados, retención hídrica, análisis sedimentológicos (prueba de sedimentación) y de cohesión de terrones (prueba de Slake). Los resultados muestran que el sector inferior del Wadi Tamri es el más inestable, con cambios morfodinámicos naturales (multiplicación de canales, desarrollo de barras y desplazamientos laterales) que han sido registrados en 1983, 2010 y 2014. Entre los años 2000 y 2010 se observó una regresión significativa de las orillas, mientras que, entre 2010 y 2024, se apreció un aumento de la estabilidad, con una mayor presencia de barras y vegetación. La mayor estabilidad, que se debe en parte a los bajos caudales que regula la presa de Moulay Abdellah aguas arriba, ofrece valiosas ideas para gestionar los paisajes fluviales que enfrentan la presión humana y el aumento de los riesgos de inundación y erosión en la zona de estudio.
Citas
Abernethy, B., & Rutherfurd, I. D. (2000). The effect of riparian tree roots on the mass-stability of riverbanks. Earth Surface Processes and Landforms, 25(9), 921‑937. https://doi.org/10.1002/1096-9837(200008)25:9<921::AID-ESP93>3.0.CO;2-7
Abu-Zreig, M., Fujimaki, H., & Abd Elbasit, M. A. (2020). Enhancing Water Infiltration through Heavy Soils with Sand-Ditch Technique. Water, 12(5), 1312. https://doi.org/10.3390/w12051312
Adams, A. E. (1980). The stratigraphy and sedimentology of a Jurassic marine transgression, Western High Atlas, Morocco. Géologie Méditerranéenne, 7(3), 223‑231. https://doi.org/10.3406/geolm.1980.1144
Addou, R., Hanchane, Mohamed., & Obda, Khalid. (2020). Vulnérabilité des basses terrasses fluviatiles du moyen Melloulou aux évènements hydro-climatiques extrêmes. Espace Géographique et Société Marocaine, No 3334 (2020): Spécial: hommage aux jeunes chercheurs africains. https://doi.org/10.34874/IMIST.PRSM/EGSM/20433
Ait Mlouk, M., Algouti, Ab., Algouti, Ah., & Ourhzif, Z. (2018). Assessment of river bank erosion in semi-arid climateregions using remote sensing and GIS data : A case studyof Rdat River, Marrakech, Morocco. Estudios Geológicos, 74(2), 081. https://doi.org/10.3989/egeol.43217.493
Ambroggi, R. (1963). Etude géologique du versant méridional du Haut Atlas occidental et de la plaine du Souss [Thèse de doctorat, Université de Paris]. Notes et Mémoires du Service Géologique (Rabat). http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19271626
Amoros, C., Roux, A. L., Reygrobellet, J. L., Bravard, J. P., & Pautou, G. (1987). A method for applied ecological studies of fluvial hydrosystems. Regulated Rivers: Research & Management, 1(1), 17‑36. https://doi.org/10.1002/rrr.3450010104
Attom, M. F., Khan, Z., & Vandanapu, R. (2020). Efficacy of sand columns to increase the sub-soil moisture content of clay. SN Applied Sciences, 2(5), 985. https://doi.org/10.1007/s42452-020-2793-1
Ball, B. C., Batey, T., & Munkholm, L. J. (2007). Field assessment of soil structural quality – a development of the Peerlkamp test. Soil Use and Management, 23(4), 329‑337. https://doi.org/10.1111/j.1475-2743.2007.00102.x
Ball, B. C., Batey, T., Munkholm, L. J., Guimarães, R. M. L., Boizard, H., McKenzie, D. C., Peigné, J., Tormena, C. A., & Hargreaves, P. (2015). The numeric visual evaluation of subsoil structure (SubVESS) under agricultural production. Soil and Tillage Research, 148, 85‑96. https://doi.org/10.1016/j.still.2014.12.005
Ball, B. C., Guimarães, R. M. L., Cloy, J. M., Hargreaves, P. R., Shepherd, T. G., & McKenzie, B. M. (2017). Visual soil evaluation : A summary of some applications and potential developments for agriculture. Soil and Tillage Research, 173, 114‑124. https://doi.org/10.1016/j.still.2016.07.006
Bertrand, G., & Tricart, J. (1968). Paysage et géographie physique globale. Esquisse méthodologique. Revue géographique des Pyrénées et du Sud-Ouest, 39(3), 249‑272. https://doi.org/10.3406/rgpso.1968.4553
Blair, T. C., & McPherson, J. G. (2009). Processes and Forms of Alluvial Fans. In A. J. Parsons & A. D. Abrahams (Éds.), Geomorphology of Desert Environments (p. 413‑467). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5719-9_14
Blume, H.-P., Brümmer, G. W., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., & Wilke, B.-M. (2016). Physical Properties and Processes. In H.-P. Blume, G. W. Brümmer, H. Fleige, R. Horn, E. Kandeler, I. Kögel-Knabner, R. Kretzschmar, K. Stahr, & B.-M. Wilke, Scheffer/SchachtschabelSoil Science (p. 175‑283). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30942-7_6
Brossard, T., & Wieber, J.-C. (1984). Le paysage : Trois définitions, un mode d’analyse et de cartographie. L’Espace géographique, 13(1), 5‑12. https://doi.org/10.3406/spgeo.1984.3887
Chalov, R. S. (2021). Natural Factors of Fluvial Processes. In R. S. Chalov, Fluvial Processes : Theory and Applications (p. 79‑192). Springer International Publishing. https://doi.org/10.1007/978-3-030-66183-0_2
Charlton, R. (2007). Fundamentals of Fluvial Geomorphology (0 éd.). Routledge. https://doi.org/10.4324/9780203371084
Choisnet, G., Delbosc, P., Bioret, F., Demartini, C., Bensettiti, F., Boullet, V., Chalumeau, A., Cianfaglione, K., & Lalanne, A. (2020). Methodology for symphytosociological and geosymphytosociological releves. Contribuţii Botanice, 54, 25‑45. https://doi.org/10.24193/Contrib.Bot.54.2
Church, M. (2015). Channel Stability : Morphodynamics and the Morphology of Rivers. In P. Rowiński & A. Radecki-Pawlik (Éds.), Rivers – Physical, Fluvial and Environmental Processes (p. 281‑321). Springer International Publishing. https://doi.org/10.1007/978-3-319-17719-9_12
Cienciala, P., & Pasternack, G. B. (2017). Floodplain inundation response to climate, valley form, and flow regulation on a gravel-bed river in a Mediterranean-climate region. Geomorphology, 282, 1‑17. https://doi.org/10.1016/j.geomorph.2017.01.006
De Lamotte, D. F., Leturmy, P., Missenard, Y., Khomsi, S., Ruiz, G., Saddiqi, O., Guillocheau, F., & Michard, A. (2009). Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia) : An overview. Tectonophysics, 475(1), 9‑28. https://doi.org/10.1016/j.tecto.2008.10.024
Díaz-Redondo, M., Marchamalo, M., Egger, G., & Magdaleno, F. (2018). Toward floodplain rejuvenation in the middle Ebro River (Spain) : From history to action. Geomorphology, 317, 117‑127. https://doi.org/10.1016/j.geomorph.2018.05.014
Doerr, S. H., Shakesby, R. A., & Walsh, R. P. D. (2000). Soil water repellency : Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51(1‑4), 33‑65. https://doi.org/10.1016/S0012-8252(00)00011-8
Dufour, S., Rinaldi, M., Piégay, H., & Michalon, A. (2015). How do river dynamics and human influences affect the landscape pattern of fluvial corridors? Lessons from the Magra River, Central–Northern Italy. Landscape and Urban Planning, 134, 107‑118. https://doi.org/10.1016/j.landurbplan.2014.10.007
Duval-Arnould, A., Bulot, L., Charton, R., Jain, S., Masrour, M., Pomar, L., Redfern, J., Simmons, M., & Schröder, S. (2024a). Architecture of Oxfordian coral buildups along the Atlantic margin of Morocco. Journal of African Earth Sciences, 213, 105206. https://doi.org/10.1016/j.jafrearsci.2024.105206
Duval-Arnould, A., Bulot, L., Masrour, M., Simmons, M., Bonnot, A., Charton, R., Redfern, J., & Schröder, S. (2024b). A new sedimentary and biostratigraphic framework for the Callovian-Oxfordian transition on the Atlantic margin of Morocco. Journal of African Earth Sciences, 210, 105164. https://doi.org/10.1016/j.jafrearsci.2023.105164
El Ouahidi, A. (2008). Etude morphosédimentaire des héritages pléistocènes et holocènes de la basse vallée de l’oued Tamri (Maroc) [Thèse de doctorat]. Nancy 2.
El Ouahidi, A., Ouammou, A., Weisrock, A., Fontugne, M., & Ridaoui, M. (2016). Holocene terrace of Irhzer Ougadir (left tributary of the Tamri wadisouthwest Morocco) : Stratigraphic and chronological framework. Journal of Materials and Environmental Science, 7(10), 3699‑3710.
El Yakouti, I., El Asmi, H., Gourari, L., Benabbou, M., Hayati, A., Chellai, E. H., & Lachguere, M. (2024a). Hydromorphological analysis of the middle Sebou river system (Eastern Saïss basin, Morocco) : Functioning, morphogenesis, and antecedent controls. Journal of African Earth Sciences, 215, 105294. https://doi.org/10.1016/j.jafrearsci.2024.105294
El Yakouti, I., El Asmi, H., Gourari, L., Benabbou, M., Hayati, A., Salah, M., & Chellai, E. H. (2024b). Facies analysis, architectural elements, and paleoenvironmental reconstruction of alluvial deposits of the low terraces and floodplains in the Middle Sebou river (Eastern Saïss foreland basin, Morocco). Journal of African Earth Sciences, 211, 105170. https://doi.org/10.1016/j.jafrearsci.2024.105170
Erős, T., & Campbell Grant, E. H. (2015). Unifying research on the fragmentation of terrestrial and aquatic habitats : Patches, connectivity and the matrix in riverscapes. Freshwater Biology, 60(8), 1487‑1501. https://doi.org/10.1111/fwb.12596
Faust, D., & Wolf, D. (2017). Interpreting drivers of change in fluvial archives of the Western Mediterranean—A critical view. Earth-Science Reviews, 174, 53‑83. https://doi.org/10.1016/j.earscirev.2017.09.011
Ferreira, A. B. R., Zacharias, A. A., Cardozo, F. S., & Fonseca, B. M. (2023). Anthropic Changes in the River Landscape of São João Del-Rei City – Minas Gerais, Brazil. Sociedade & Natureza. https://doi.org/10.14393/SN-v35-2023-66435x
Fierer, N., Schimel, J. P., & Holden, P. A. (2003). Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 35(1), 167‑176. https://doi.org/10.1016/S0038-0717(02)00251-1
Foster, G. R., Young, R. A., Römkens, M. J. M., & Onstad, C. A. (2015). Processes of Soil Erosion by Water. In R. F. Follett & B. A. Stewart (Éds.), ASA, CSSA, and SSSA Books (p. 137‑162). American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. https://doi.org/10.2134/1985.soilerosionandcrop.c9
Fryirs, K. A. (2017). River sensitivity: A lost foundation concept in fluvial geomorphology. Earth Surface Processes and Landforms, 42(1), 55‑70. https://doi.org/10.1002/esp.3940
Fryirs, K. A., & Brierley, G. J. (2012). Geomorphic Analysis of River Systems: An Approach to Reading the Landscape. John Wiley & Sons.
Ganciu, A., Cicalò, E., Valentino, M., & Balestrieri, M. (2024). Visualising Landscape Dynamics. Sustainability, 16(2), 527. https://doi.org/10.3390/su16020527
Gardner, C. M. K. (1999). Soil Physical Constraints to Plant Growth and Crop Production (AGL/MISC/24/99; Land and Water Development Division Food and Agriculture Organization of the United Nations, p. 106). FAO.
Ghezzehei, T. (2012). Soil Structure. In Properties and Processes (Second Edition, p. 1‑17). Taylor & Francis. https://doi.org/10.1201/b16386-7
Gilvear, D. J. (1999). Fluvial geomorphology and river engineering: Future roles utilizing a fluvial hydrosystems framework. Geomorphology, 31(1‑4), 229‑245. https://doi.org/10.1016/S0169-555X(99)00086-0
Gordon B, J., & Goode, S. (2020). Soil: The Dirty Secrets of a Living Landscape. Land Steward Program | Rural Resource Guidelines, 11.
Grabowski, R. C., Vercruysse, K., Holman, I., Azhoni, A., Bala, B., Shankar, V., Beale, J., Mukate, S., Poddar, A., Peng, J., & Meersmans, J. (2022). The land–river interface: A conceptual framework of environmental process interactions to support sustainable development. Sustainability Science, 17(4), 1677‑1693. https://doi.org/10.1007/s11625-022-01150-x
Groenendyk, D. G., Ferré, T. P. A., Thorp, K. R., & Rice, A. K. (2015). Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function. PLOS ONE, 10(6), e0131299. https://doi.org/10.1371/journal.pone.0131299
Gurnell, A. M., Corenblit, D., García De Jalón, D., González Del Tánago, M., Grabowski, R. C., O’Hare, M. T., & Szewczyk, M. (2016). A Conceptual Model of Vegetation–hydrogeomorphology Interactions Within River Corridors. River Research and Applications, 32(2), 142‑163. https://doi.org/10.1002/rra.2928
Gurnell, A. M., Petts, G. E., Hannah, D. M., Smith, B. P. G., Edwards, P. J., Kollmann, J., Ward, J. V., & Tockner, K. (2001). Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento, Italy. Earth Surface Processes and Landforms, 26(1), 31‑62. https://doi.org/10.1002/1096-9837(200101)26:1<31::AID-ESP155>3.0.CO;2-Y
Hao, J., Chai, Y. N., Lopes, L. D., Ordóñez, R. A., Wright, E. E., Archontoulis, S., & Schachtman, D. P. (2021). The Effects of Soil Depth on the Structure of Microbial Communities in Agricultural Soils in Iowa (United States). Applied and Environmental Microbiology, 87(4), e02673-20. https://doi.org/10.1128/AEM.02673-20
Hasan, O., Ennaji, N., Spalevic, V., Gomih, M., Omar, G., Mohamed, C., & El Ghachi, M. (2023). Changes in river bank morphology in a small meander of El Abid River, Atlas Mountains, Morocco. The Journal Agriculture and Forestry, 69, 199‑209. https://doi.org/10.17707/AgricultForest.69.3.14
Hasanuzzaman, Md., & Mandal, S. (2020). A morphology-independent methodology to assess erosion, accretion and lateral migration of an alluvial channel using geospatial tools : A study on the Raidak-I river of Himalayan Foothills. Sustainable Water Resources Management, 6(3), 35. https://doi.org/10.1007/s40899-020-00393-9
Hazarika, N., Das, A. K., & Borah, S. B. (2015). Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS-GIS techniques. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 107‑118. https://doi.org/10.1016/j.ejrs.2015.02.001
Herrick, J. E., Whitford, W. G., De Soyza, A. G., Van Zee, J. W., Havstad, K. M., Seybold, C. A., & Walton, M. (2001). Field soil aggregate stability kit for soil quality and rangeland health evaluations. CATENA, 44(1), 27‑35. https://doi.org/10.1016/S0341-8162(00)00173-9
Higson, J. L., & Singer, M. B. (2015). The impact of the streamflow hydrograph on sediment supply from terrace erosion. Geomorphology, 248, 475‑488. https://doi.org/10.1016/j.geomorph.2015.07.037
Hohensinner, S., Hauer, C., & Muhar, S. (2018). River Morphology, Channelization, and Habitat Restoration. In S. Schmutz & J. Sendzimir (Éds.), Riverine Ecosystem Management (p. 41‑65). Springer International Publishing. https://doi.org/10.1007/978-3-319-73250-3_3
Holušová, A., Vaverka, L., Poledniková, Z., & Galia, T. (2022). The dynamic river landscape through time : Natural vs. regulated reaches of the Odra river. Proceedings of the 39th IAHR World Congress, 1184‑1191. https://doi.org/10.3850/IAHR-39WC2521711920221132
Hooke, J. M. (2006). Human impacts on fluvial systems in the Mediterranean region. Geomorphology, 79(3‑4), 311‑335. https://doi.org/10.1016/j.geomorph.2006.06.036
Hooke, J. M. (2008). Temporal variations in fluvial processes on an active meandering river over a 20-year period. Geomorphology, 100(1‑2), 3‑13. https://doi.org/10.1016/j.geomorph.2007.04.034
Irifi, H. (2023). Dynamique des paysages de montagne : Paramètres, Impacts et Valorisation. Cas de la basse vallée de l’oued Tamri (Atlas Atlantique-Maroc). [Thèse de doctorat]. Sidi Mohamed Ben Abdellah.
Irifi, H., Tribak, A. y Achour, A. (2020). Paysages naturels dans la basse vallée de l’oued Tamri (Maroc) : Proposition de l’approche paysagère pour une valorisation touristique. Geography Notebooks, 3(1), 1. https://doi.org/10.7358/gn-2020-001-irif
Irifi, H., Achour, A., & Tribak, A. (2017). Dynamique du paysage forestier de l’Arganeraie Caractéristiques, évolution et valorisation : Cas de l’Arganeraie de la forêt d’Ain Tamaloukt, Commune territoriale de Tamri, Maroc. Arganier : Patrimoine universel porteur de richesse à conserver et à valoriser, 63‑69.
Irifi, H., & Tribak, A. (2021). Diversité Floristique et Paysagère du Cours d’eau de la Basse Vallée de l’oued Tamri (Haut Atlas Atlantique, Maroc). Geomaghreb, 17, Article 17. https://revues.imist.ma/index.php/Geomaghreb/article/view/36972
Irifi, H., & Tribak, A. (2024a). Argania spinosa and Tetraclinis articulata seedling regeneration factors in the lower valley of Wadi Tamri (Morocco). Revista de Estudios Andaluces, 48, 133‑150. https://doi.org/10.12795/rea.2024.i48.07
Irifi, H., & Tribak, A. (2024b). Dynamique des Paysages Géomorphologiques des Versants Marneux et Sous Couvert Forestier dans La Basse Vallée de l’oued Tamri (Haut Atlas Atlantique -Maroc). 160‑166.
Islam, A., & Guchhait, S. K. (2024). Riverbank Erosion : A Natural Process. In A. Islam & S. K. Guchhait, Riverbank Erosion in the Bengal Delta (p. 43‑98). Springer International Publishing. https://doi.org/10.1007/978-3-031-47010-3_3
Islam, A. R. Md. T. (2016). Assessment of Fluvial Channel Dynamics of Padma River in Northwestern Bangladesh. Universal Journal of Geoscience, 4(2), 41‑49. https://doi.org/10.13189/ujg.2016.040204
Jackisch, C., Angermann, L., Allroggen, N., Sprenger, M., Blume, T., Tronicke, J., & Zehe, E. (2017). Form and function in hillslope hydrology : In situ imaging and characterization of flow-relevant structures. Hydrology and Earth System Sciences, 21(7), 3749‑3775. https://doi.org/10.5194/hess-21-3749-2017
Khomsi, K., Mahe, G., Tramblay, Y., Sinan, M., & Snoussi, M. (2016). Regional impacts of global change: Seasonal trends in extreme rainfall, run-off and temperature in two contrasting regions of Morocco. Natural Hazards and Earth System Sciences, 16(5), 1079‑1090. https://doi.org/10.5194/nhess-16-1079-2016
Klute, A. (2018). Water Retention: Laboratory Methods. In A. Klute (Éd.), SSSA Book Series (p. 635‑662). Soil Science Society of America, American Society of Agronomy. https://doi.org/10.2136/sssabookser5.1.2ed.c26
Koohizadeh Dehkordi, A., Fatahi Nafchi, R., Samadi-Boroujeni, H., Khastar Boroujeni, M., & Ostad–Ali–Askari, K. (2024). Assessment of morphological changes of river bank erosion using landsat satellite time-series images. Ain Shams Engineering Journal, 15(3), 102455. https://doi.org/10.1016/j.asej.2023.102455
Laabidi, A. (2014). Typologie morpho-sédimentaire des dépôts actuels de la vallée du Moyen Beht (Sillon sud rifain occidental, Maroc). IOSR Journal of Engineering, 4(4), 10‑24. https://doi.org/10.9790/3021-04431024
Lal, R. (2020). Soil organic matter and water retention. Agronomy Journal, 112(5), 3265‑3277. https://doi.org/10.1002/agj2.20282
Lawler, D. M. (1993). The measurement of river bank erosion and lateral channel change: A review. Earth Surface Processes and Landforms, 18(9), 777‑821. https://doi.org/10.1002/esp.3290180905
Lobera, G., Besné, P., Vericat, D., López-Tarazón, J. A., Tena, A., Aristi, I., Díez, J. R., Ibisate, A., Larrañaga, A., Elosegi, A., & Batalla, R. J. (2015). Geomorphic status of regulated rivers in the Iberian Peninsula. Science of The Total Environment, 508, 101‑114. https://doi.org/10.1016/j.scitotenv.2014.10.058
Lugo, G. A. G. (2014). Braided rivers : An exploratory study combining flume experiments and the analysis of remotely-sensed data [Doctor of Philosophy School of Geography, Queen Mary University of London]. https://iris.unitn.it/retrieve/a9cfb8c8-98ac-4e5b-8fd8-52c528ca87fe/GARCIA_LUGO_Grecia_PhD_EMJDSMART_Primary__PhD_020315.pdf
Magdoff, F. (1993). Building Soils for Better Crops : Organic Matter Management. Soil Science, 156(5), 371. https://doi.org/10.1097/00010694-199311000-00014
Malavoi, J.-R., & Bravard, J.-P. (avec Office national de l’eau et des milieux aquatiques). (2010). Éléments d’hydromorphologie fluviale. ONEMA.
Marteau, B., Gibbins, C., Batalla, R. J., & Vericat, D. (2018). Review of good practice in managing riverbank instability and erosion. WWF Malaisie. https://hal.science/hal-04648840
Miall, A. D. (2013). The Geology of Fluvial Deposits : Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer.
MNab, F., Schildgen, T. F., Turowski, J. M., & Wickert, A. D. (2023). Diverse Responses of Alluvial Rivers to Periodic Environmental Change. Geophysical Research Letters, 50(10), e2023GL103075. https://doi.org/10.1029/2023GL103075
Mrabet, R., Moussadek, R., Fadlaoui, A., & Van Ranst, E. (2012). Conservation agriculture in dry areas of Morocco. Field Crops Research, 132, 84‑94. https://doi.org/10.1016/j.fcr.2011.11.017
Murphy, B. W. (2015). Impact of soil organic matter on soil properties—A review with emphasis on Australian soils. Soil Research, 53(6), 605. https://doi.org/10.1071/SR14246
Nones, M. (2020). On the main components of landscape evolution modelling of river systems. Acta Geophysica, 68(2), 459‑475. https://doi.org/10.1007/s11600-020-00401-8
Ollero, A. (2010). Channel changes and floodplain management in the meandering middle Ebro River, Spain. Geomorphology, 117(3‑4), 247‑260. https://doi.org/10.1016/j.geomorph.2009.01.015
Osman, A. M., & Thorne, C. R. (1988). Riverbank Stability Analysis. I : Theory. Journal of Hydraulic Engineering, 114(2), 134‑150. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:2(134)
Osman, K. T. (2013). Physical Properties of Soil. In K. T. Osman, Soils (p. 49‑65). Springer Netherlands. https://doi.org/10.1007/978-94-007-5663-2_5
Osterkamp, W. R., & Hupp, C. R. (2010). Fluvial processes and vegetation—Glimpses of the past, the present, and perhaps the future. Geomorphology, 116(3‑4), 274‑285. https://doi.org/10.1016/j.geomorph.2009.11.018
Ouammou, A., Weisrock, A., Balescu, S., Ouahidi, A. E., Ghaleb, B., Guerin, G., Hardy, F., Viñuela, J. M., Abdessadok, S., Charif, A., Rousseau, L., Lamothe, M., & Falgueres, C. (2019). Paléorivages, dunes côtières et occupations humaines à l’embouchure de l’Oued Tamri, Maroc Atlantique, au Pléistocène Supérieur (SIM 5). Journal of Water and Environmental Sciences, 3(RQM9), 391‑406.
Ouhamdouch, S., Bahir, M., Ouazar, D., Carreira, P. M., & Zouari, K. (2019). Evaluation of climate change impact on groundwater from semi-arid environment (Essaouira Basin, Morocco) using integrated approaches. Environmental Earth Sciences, 78(15), 449. https://doi.org/10.1007/s12665-019-8470-2
Partheniades, E. (2009). Cohesive Sediments in Open Channels : Erosion, Transport and Deposition. Butterworth-Heinemann.
Partheniades, E., & Paaswell, R. E. (1970). Erodibility of Channels with Cohesive Boundary. Journal of the Hydraulics Division, 96(3), 755‑771. https://doi.org/10.1061/JYCEAJ.0002377
Parvej, M., Masum, K. M., Fahim, Md. S. I., & Redowan, M. (2024). Three Decades of River Bank Erosion and Accretion Appraisal Along Bank Line Shifting Trend in A Transboundary River, Teesta Floodplain of Bangladesh. Geoplanning: Journal of Geomatics and Planning, 11(1), 1‑16. https://doi.org/10.14710/geoplanning.11.1.1-16
Phillips, C. B., Masteller, C. C., Slater, L. J., Dunne, K. B. J., Francalanci, S., Lanzoni, S., Merritts, D. J., Lajeunesse, E., & Jerolmack, D. J. (2022). Threshold constraints on the size, shape and stability of alluvial rivers. Nature Reviews Earth & Environment, 3(6), 406‑419. https://doi.org/10.1038/s43017-022-00282-z
Phillips, J. D. (2010). The job of the river. Earth Surface Processes and Landforms, 35(3), 305‑313. https://doi.org/10.1002/esp.1915
Piégay, H. (2016). System approaches in fluvial geomorphology. In G. M. Kondolf & H. Piégay (Éds.), Tools in Fluvial Geomorphology (1re éd., p. 77‑102). Wiley. https://doi.org/10.1002/9781118648551.ch5
Poeppl, R. E., Keesstra, S. D., & Maroulis, J. (2017). A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. Geomorphology, 277, 237‑250. https://doi.org/10.1016/j.geomorph.2016.07.033
Pradhan, C., Nandi, K. K., Bharti, R., & Dutta, S. (2023). Developing process-based geomorphic indicators for understanding river dynamics of a highly braided system : Implications for designing resilience based management strategies. CATENA, 232, 107411. https://doi.org/10.1016/j.catena.2023.107411
Rabanaque, M. P., Martínez‐Fernández, V., Calle, M., & Benito, G. (2022). Basin‐wide hydromorphological analysis of ephemeral streams using machine learning algorithms. Earth Surface Processes and Landforms, 47(1), 328‑344. https://doi.org/10.1002/esp.5250
Remini, B., & Bensafia, D. (2016). Envasement des barrages dans les régions arides : Exemples algériens. LARHYSS Journal P-ISSN 1112-3680 / E-ISSN 2521-9782, 27, Article 27.
Sahabi, M., Aslanian, D., & Olivet, J.-L. (2004). Un nouveau point de départ pour l’histoire de l’Atlantique central. Comptes Rendus. Géoscience, 336(12), 1041‑1052. https://doi.org/10.1016/j.crte.2004.03.017
Sanchis-Ibor, C., Segura-Beltrán, F., & Almonacid-Caballer, J. (2017). Channel forms recovery in an ephemeral river after gravel mining (Palancia River, Eastern Spain). CATENA, 158, 357‑370. https://doi.org/10.1016/j.catena.2017.07.012
Schomburg, A., Sebag, D., Turberg, P., Verrecchia, E. P., Guenat, C., Brunner, P., Adatte, T., Schlaepfer, R., & Le Bayon, R. C. (2019). Composition and superposition of alluvial deposits drive macro-biological soil engineering and organic matter dynamics in floodplains. Geoderma, 355, 113899. https://doi.org/10.1016/j.geoderma.2019.113899
Silva, A. J. P. D., & Rios, M. L. (2020). Terracing Recovers the Quality of a Riverbank Soil Degraded by Water Erosion in Brazilian Semiarid. Floresta e Ambiente, 27(1), e20190094. https://doi.org/10.1590/2179-8087.009419
Slater, L. J., Singer, M. B., & Kirchner, J. W. (2015). Hydrologic versus geomorphic drivers of trends in flood hazard. Geophysical Research Letters, 42(2), 370‑376. https://doi.org/10.1002/2014GL062482
Souss-Massa Water Basin Agency (n.d.). https://www.abhsm.ma/
Stagnari, F., Ramazzotti, S., & Pisante, M. (2009). Conservation Agriculture : A Different Approach for Crop Production Through Sustainable Soil and Water Management: A Review. In E. Lichtfouse (Éd.), Organic Farming, Pest Control and Remediation of Soil Pollutants (Vol. 1, p. 55‑83). Springer Netherlands. https://doi.org/10.1007/978-1-4020-9654-9_5
Tisserant, M., Bourgeois, B., González, E., Evette, A., & Poulin, M. (2021). Controlling erosion while fostering plant biodiversity : A comparison of riverbank stabilization techniques. Ecological Engineering, 172, 106387. https://doi.org/10.1016/j.ecoleng.2021.106387
Todd, S. P. (1989). Stream‐driven, high‐density gravelly traction carpets : Possible deposits in the Trabeg Conglomerate Formation, SW Ireland and some theoretical considerations of their origin. Sedimentology, 36(4), 513‑530. https://doi.org/10.1111/j.1365-3091.1989.tb02083.x
Tofelde, S., Savi, S., Wickert, A. D., Bufe, A., & Schildgen, T. F. (2019). Alluvial channel response to environmental perturbations : Fill-terrace formation and sediment-signal disruption. Earth Surface Dynamics, 7(2), 609‑631. https://doi.org/10.5194/esurf-7-609-2019
Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L., & Servat, E. (2012). Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change, 82‑83, 104‑114. https://doi.org/10.1016/j.gloplacha.2011.12.002
Tribak, A. (2020). Erosion and Flooding Risks in the Marly Basins of the Eastern Prerif Mountains (Morocco) : A Response to Exceptional Climate Events or to Anthropogenic Pressure. Revista de Estudios Andaluces, 40, 159‑182. https://doi.org/10.12795/rea.2020.i40.09
Ulloa, H., Mazzorana, B., Batalla, R. J., Jullian, C., Iribarren-Anacona, P., Barrientos, G., Reid, B., Oyarzun, C., Schaefer, M., & Iroumé, A. (2018). Morphological characterization of a highly-dynamic fluvial landscape : The River Baker (Chilean Patagonia). Journal of South American Earth Sciences, 86, 1‑14. https://doi.org/10.1016/j.jsames.2018.06.002
Vaezi, A. R., Hasanzadeh, H., & Cerdà, A. (2016). Developing an erodibility triangle for soil textures in semi-arid regions, NW Iran. CATENA, 142, 221‑232. https://doi.org/10.1016/j.catena.2016.03.015
Villodre, M., Arnaiz-Schmitz, C., & Schmitz, M. F. (2023). Landscape conservation in the natural-rural interface. A social-ecological approach in Natural Parks of Andalusia (Spain). Landscape Ecology, 38(12), 3517‑3535. https://doi.org/10.1007/s10980-023-01699-7
Ward, J. V., Tockner, K., Arscott, D. B., & Claret, C. (2002). Riverine landscape diversity. Freshwater Biology, 47(4), 517‑539. https://doi.org/10.1046/j.1365-2427.2002.00893.x
Warner, R. F., & Paterson, K. W. (1987). Bank Erosion in the Bellinger Valley, New South Wales : Definition and Management. Australian Geographical Studies, 25(2), 3‑14. https://doi.org/10.1111/j.1467-8470.1987.tb00547.x
Weisrock, A. (1980). Géomorphologie et paléoenvironnement de l’Atlas Atlantique (Maroc) [Thèse de doctorat d’Etat]. Paris I.
Weisrock, A. (1984). Nappes alluviales et basses terrasses du Maroc atlantique. https://doi.org/10.3406/quate.1984.1511
Weisrock, A. (1985). Originalité karstique de l’Atlas atlantique marocain. Karstologia : revue de karstologie et de spéléologie physique, 5(1), 29‑38. https://doi.org/10.3406/karst.1985.2086
Weisrock, A. (2012). Late-middle Pleistocene, late Pleistocene and Holocene palaeo-sea-level records at Agadir and the Atlantic Atlas coastal reach, Morocco: An updated overview. Quaternaire, 23, 211‑225. https://doi.org/10.4000/quaternaire.6252
Weisrock, A. (2016). Niveaux marins du Maroc atlantique durant le dernier Interglaciaire (SIM 5.5, SIM 5.3 et SIM 5.1). Géomorphologie : relief, processus, environnement, 22(3), 245‑251. https://doi.org/10.4000/geomorphologie.11513
Weisrock, A., Boudad, L., Ouammou, A., Mhamed, B., Ali, A. H., & Chakir, L. (2017). Quaternary of the semi-arid Moroccan area Field-trip Guide of the 2010 AFEQ-AMEQ. https://doi.org/10.13140/RG.2.2.35300.27529
Weisrock, A., Occhietti, S., Hoang, C.-T., Lauriat-Rage, A., Brebion, P., & Pichet, P. (1999). Les séquences littorales pléistocènes de l’Atlas atlantique entre Cap Rhir et Agadir, Maroc [Pleistocene littoral sequences of the atlantic Atlas between Agadir an Cape Rhir, Morocco]. Quaternaire, 10(2), 227‑244. https://doi.org/10.3406/quate.1999.1645
Weisrock, A., & Rognon, P. (1977). Evolution morphologique des basses vallées de l’Atlas atlantique Marocain. https://doi.org/10.3406/geolm.1977.1013
Weisrock, A., Wahl, L., Ouammou, A., & Chakir, L. (2006). Systèmes fluviaux du Sud-Ouest marocain et leur évolution depuis le Pléistocène supérieur. Géomorphologie : relief, processus, environnement, 12(4), 229‑248. https://doi.org/10.4000/geomorphologie.11119
Wolf, D., & Faust, D. (2015). Western Mediterranean environmental changes: Evidences from fluvial archives. Quaternary Science Reviews, 122, 30‑50. https://doi.org/10.1016/j.quascirev.2015.04.016
Wolf, D., & Faust, D. (2016). River braiding caused by rapid floodplain deformation – Insights from Holocene dynamics of the Jarama River in central Spain. Quaternary International, 407, 126‑139. https://doi.org/10.1016/j.quaint.2016.01.027
Yazami Ztait, M., Sammaâ, I., & El Hawari, J. (2023). L’érosion des berges de l’oued Sebou et leur impact morphologique en Pré-Rif : Le cas de la partie s’étendant entre les deux vallées, Inaouene et Bouchabel – Maroc. Zenodo. https://doi.org/10.5281/ZENODO.10015253
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Hicham Irifi, Abdellatif Tribak

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores/as que publican en Investigaciones Geográficas están de acuerdo en los siguientes términos:
- Derechos de autor: La autoría conserva los derechos sobre sus trabajos, aunque cede de forma no exclusiva los derechos de explotación (reproducción, edición, distribución, comunicación pública y exhibición) a la revista. Los autores/as son, por tanto, libres de hacer acuerdos contractuales adicionales independientes para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, alojarlo en un repositorio institucional o publicarlo en un libro), siempre que medie un reconocimiento de su publicación inicial en esta revista.
- Manifiesto: Los autores aseguran que Investigaciones Geográficas es el primer medio que publica su obra y garantizan que mientras se encuentra en fase de valoración y posible publicación en nuestra revista no se ha enviado, ni enviará a otros medios.
- Licencia: Los trabajos se publican bajo una licencia Creative Commons de Atribución-NoComercial-CompartirIgual 4.0 Internacional, salvo que se indique lo contrario. Esto es que se puede compartir y adaptar el material siempre que no se use con fines comerciales, se distribuya bajo la misma licencia del original, se realice atribución a la autoría y al primer medio que publica y se proporcione un enlace a la licencia. Igualmente hay que indicar si se han realizado cambios.

- Política de autoarchivo: Se permite y alienta a los autores/as a difundir electrónicamente el artículo final publicado (versión del editor) en Investigaciones Geográficas (como en repositorios institucionales, en su página web, ...) con el fin de lograr intercambios productivos y conseguir que la obra logre mayor citación (véase The Effect of Open Access, en inglés).



