Variación espacio-temporal de las islas de calor como determinante del confort térmico urbano en la Zona Metropolitana del Valle de Toluca, México

Autores/as

Palabras clave:

infraestructura gris, infraestructura verde, Landsat, NDVI, temperatura superficial terrestre, Toluca, urbanización, uso de suelo

Resumen

Las islas de calor urbanas son un problema importante con diversas consecuencias negativas en las zonas urbanas, generando una disminución en el confort térmico y malestar de los habitantes por el incremento de la temperatura ambiental. Este estudio evaluó la dinámica espacio-temporal de las islas de calor superficiales y el confort térmico urbano en la Zona Metropolitana del Valle de Toluca, México. Se calculó el NDVI y la temperatura superficial terrestre a partir de imágenes Landsat para determinar las islas de calor y el confort térmico urbano. Se observó que existen diferencias en la distribución de las islas de calor a lo largo del año siendo verano y otoño las estaciones más afectadas, principalmente en las áreas más urbanizadas. El confort térmico también muestra variaciones estacionales, donde más del 30% de la superficie evaluada presenta malas condiciones. Las variaciones en la distribución e intensidad de las islas de calor y el confort térmico están influenciadas por los cambios estacionales en la cobertura vegetal, lo cual se evidencia en la correlación negativa observada entre el NDVI y la temperatura superficial terrestre, así como con las islas de calor superficiales. El estudio presenta algunas limitaciones, entre las que se incluyen la baja resolución espacial de las imágenes para capturar detalles finos, su limitada frecuencia temporal, la interferencia de nubes, una capacidad espectral restringida para ciertos análisis y una disponibilidad histórica variable. No obstante, la información generada puede ser de gran ayuda para el diseño de estrategias de planificación territorial que promuevan la sostenibilidad de la zona.

Citas

Aghamolaei, R., Azizi, M.M., Aminzadeh, B., & O’Donnell, J. (2023). A comprehensive review of outdoor thermal comfort in urban areas: Effective parameters and approaches. Energy & Environment, 34(6), 2204-2227. https://doi.org/10.1177/0958305X221116176

Ahmad, B., Najar, M. B., & Ahmad, S. (2024). Analysis of LSt, NDVI, and UHI patterns for urban climate using Landsat-9 satellite data in Delhi. Journal of Atmospheric and Solar-Terrestrial Physics, 265, 106359. https://doi.org/10.1016/j.jastp.2024.106359

Alabarca, J., Gracia, E. S., Medina, B. M. G., Moreira, K. D. M., & Montero, J. (2024). Estudio de sombras del sector de san francisco. SusBCity, 6(1), 30-36. https://doi.org/10.48204/2710-7426.4778

Algretawee, H. (2022). The effect of graduated urban park size on park cooling island and distance relative to land surface temperature (LST). Urban Climate, 45, 101255. https://doi.org/10.1016/j.uclim.2022.101255

Arifwidodo, S. D., Chandrasiri, O., Abdulharis, R., & Kubota, T. (2019). Exploring the effects of urban heat island: A case study of two cities in Thailand and Indonesia. APN Science Bulletin, 9(1). https://doi.org/10.30852/sb.2019.539

Ballinas, M., & Barradas, V. (2016) The urban tree as a tool to mitigate the urban heat island in Mexico city: a simple phenomenological model. Journal of Environmental Quality, 45, 157–166. https://doi.org/10.2134/jeq2015.01.0056

Ballinas, M., Morales-Santiago, S. I., Barradas, V. L., Lira, A., & Oliva-Salinas, G. (2022). Is PET an adequate index to determine human thermal comfort in Mexico City? Sustainability, 14(19), 12539. https://doi.org/10.3390/su141912539

Barrera-Alarcón, I. G., Caudillo-Cos, C. A., Medina-Fernández, S. L., Ávila-Jiménez, F. G., & Montejano-Escamilla, J. A. (2022). La isla de calor urbano superficial y su manifestación en la estructura urbana de la ciudad de México. Revista de Ciencias Tecnológicas, 5(3), 312-330. https://doi.org/10.37636/recit.y5n3n227

Barrao, S., Serrano-Notivoli, R., Cuadrat, J. M., Tejedor, E., & Saz-Sánchez, M. A. (2022). Characterization of the UHI in Zaragoza (Spain) using a quality-controlled hourly sensor-based urban climate network. Urban Climate, 44, 101207. https://doi.org/10.1016/j.uclim.2022.101207

Becerril-Piña, R., Reyes, D. A. M., Díaz-Delgado, C., & Ascención, R. B. (2023). Índices de vegetación espectrales: bases para la gestión y planeación de las áreas verdes urbanas de Toluca. In S. Villerías, G. Nochebuena, B. Castillo y H. Gervacio (coords.). Retos para el desarrollo territorial: diferentes reflexiones (pp. 51-54). Qartuppi.

Bonilla, C., Martínez, J., & García, P. (2022). Análisis de la matriz energética en México y sus implicaciones ambientales. Revista de Producción Más Limpia, 249, 119221. https://doi.org/10.1016/j.jclepro.2022.119221

Bowler, D. E., Buyung-Ali, L. M., Knight, T., & Pullin, A. S. (2010). Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147-155. https://doi.org/10.1016/j.landurbplan.2010.05.006

Cai, X., Yang, J., Zhang, Y., Xiao, X., & Xia, J. C. (2023). Cooling island effect in urban parks from the perspective of internal park landscape. Humanities and Social Sciences Communications, 10(1), 1-12. https://doi.org/10.1057/s41599-023-02209-5

Cao, S., Yin, W., Su, J., Feng, C. W., Du, Y. C., Zhu, J-Y., Ye, N, Ding, J-Y., & Li, Y-Z. (2023). Spatial and temporal evolution of multi-scale green space environments and urban heat islands: a case study of Beijing sub-center. Sensors and Materials, 35(2), 589. https://doi.org/10.18494/SAM4189

Cerdas, V. M., Castro, L. P., Vargas, M. R., & Bermúdez-Rojas, T. (2018). Indicadores ambientales de áreas verdes urbanas para la gestión en dos ciudades costarricenses. Revista de Biología Tropical, 66(4), 1421. https://doi.org/10.15517/rbt.v66i4.32258

Cho, L. J., & Bauer, J. G. (2019). Population growth and urbanization: what does the future hold? In R.J. Fuchs, G.W. Jones & E.M. Pernia (eds.), Urbanization and urban policies in Pacific Asia (pp. 15-37). Routledge.

Contreras, S. W., Galban, P. M. G., & Mora, S. B. S. (2018). Análisis estadístico de la radiación solar en la ciudad de Cúcuta. Entre Ciencia e Ingeniería, 12(23), 16-22. https://doi.org/10.31908/19098367.3698

Dave, N. M., Vasani, R. P., & Chhasiya, P. (2022). Modelling the impact of urban heat island mitigation strategies on urban air quality. Current World Environment, 17(2). https://dx.doi.org/10.12944/CWE.17.2.11

Degefu, M. A., Argaw, M., Feyisa, G. L., & Degefa, S. (2022). Regional and urban heat island studies in megacities: a systematic analysis of research methodology. Indoor and Built Environment, 31(7), 1775-1786. https://doi.org/10.1177/1420326x211061491

Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., Honda, Y., Kovats, R.S., Ma, W., Malik, A., Morris, N. B., Nybo, L., Seneviratne, S. I., Vanos, J., & Jay, O. (2021). Hot weather and heat extremes: health risks. The Lancet, 398(10301), 698-708. https://doi.org/10.1016/S0140-6736(21)01208-3

Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M., & Trigo, I. F. (2020). Google Earth Engine open-source code for land surface temperature estimation from the landsat series. Remote Sensing, 12(9), 1471. https://doi.org/10.3390/rs12091471

Flores, A. V., & Cenecorta, A. I. (2015). Gobernanza metropolitana como estrategia para planificar y gestionar el desarrollo de la Zona Metropolitana del Valle de Toluca. Revista de Estudios Regionales, (102), 91-118. https://www.redalyc.org/articulo.oa?id=75539637003

Fuente-Pérez, C. A. (2015). Islas de calor urbano en Tampico, México. Impacto del microclima a la calidad del hábitat. Nova Scientia, 7(13), 495-515. https://www.redalyc.org/pdf/2033/203332667024.pdf

García-Cueto R. O., Jáuregui-Ostos, E., Toudert, D., & Tejeda-Martínez, A. (2007). Detection of the urban heat island in Mexicali B.C., Mexico and its relationship with land use. Atmósfera, 20(2), 111-131. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-62362007000200001

García-Cueto R. O., Tejeda M. A., & Bojórquez M. G. (2009). Urbanization effects upon the air temperature in Mexicali, B. C., México. Atmósfera, 22(4), 349-365 (2009). https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-62362009000400002

Ghasempour, F., Şekertekin, A., & Kutoglu, S. H. (2023). How landsat 9 is superior to landsat 8: comparative assessment of land use land cover classification and land surface temperature. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, X-4/W1-2022, 221-227. https://doi.org/10.5194/isprs-annals-x-4-w1-2022-221-2023

Gobierno del Estado de México (GEM) (2011). Aire limpio: programa para el Valle de Toluca 2007-2011. Gobierno del Estado de México, Secretaria del Medio Ambiente. Toluca, México. https://www.gob.mx/cms/uploads/attachment/file/69308/8_ProAire_ZMVT_2007-2011.pdf

Goldstein, B., Gounaridis, D., & Newell, J. P. (2020). The carbon footprint of household energy uses in the United States. Proceedings of the National Academy of Sciences, 117(32), 19122-19130. https://doi.org/10.1073/pnas.1922205117

Gong, X., Liu, Q., Lv, Y., Chen, S., Wu, S., & Ying, H. (2023). A systematic review on the strategies of reducing asphalt pavement temperature. Case Studies in Construction Materials, 18, e01852. https://doi.org/10.1016/j.cscm.2023.e01852

Gosling, S. N., Lowe, J. A., McGregor, G. R., Pelling, M., & Malamud, B. D. (2009). Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Climatic Change, 92, 299-341. https://doi.org/10.1007/s10584-008-9441-x

Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319(5864), 756-760. https://doi.org/10.1126/science.1150195

Haase, D., Güneralp, B., Dahiya, B., Bai, X., & Elmqvist, T. (2018). The urban planet: Knowledge towards sustainable cities. Cambridge University Press. https://doi.org/10.1017/9781316647554

Hasan, S. S., Zhen, L., Miah, M. G., Ahamed, T., & Samie, A. (2020). Impact of land use change on ecosystem services: A review. Environmental Development, 34, 100527. https://doi.org/10.1016/j.envdev.2020.100527

He, B. J., Wang, J., Liu, H., & Ulpiani, G. (2021). Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environmental Research, 193, 110584. https://doi.org/10.1016/j.envres.2020.110584

Hidalgo-García, D., & Arco-Díaz, J. (2022). Modeling the Surface urban heat island (SUHI) to study of its relationships with variations in the thermal field and with the indices of land use in the metropolitan area of Granada (Spain). Sustainable Cities and Society, 87, 104166. https://doi.org/10.1016/j.scs.2022.104166

Hoyos-Castillo, G. H., Adame-Martínez, S., & Sánchez-Nájera, R. M. (2022) Reconstruir el crecimiento metropolitano insustentable de Toluca. In M.V. Santana-Juárez, G. Hoyos-Castillo, G. Santana-Castañeda, R. Huitrón y B. González (coords.), Territorios sustentables en contexto de pandemia (pp. 95-122). Universidad Autónoma del Estado de México. Toluca, México. https://www.researchgate.net/publication/369376477_Libro_Territorios_sustentables

Huang, M., Cui, P., & He, X. (2018). Study of the cooling effects of urban green space in harbin in terms of reducing the heat island effect. Sustainability, 10(4), 1101. https://doi.org/10.3390/su10041101

Hurduc, A., Ermida, S. L., Trigo, I. F., & DaCamara, C. C. (2024). Importance of temporal dimension and rural land cover when computing surface urban heat island intensity. Urban Climate, 56, 102013. https://doi.org/10.1016/j.uclim.2024.102013

Huynen, M. M., Martens, P., Schram, D., Weijenberg, M. P., & Kunst, A. E. (2001). The impact of heat waves and cold spells on mortality rates in the Dutch population. Environmental Health Perspectives, 109(5), 463-470. https://doi.org/10.1289/ehp.01109463

Instituto Nacional de Estadística y Geografía (INEGI) (2020). Censo de México 2020. INEGI. México.

Instituto Nacional de Estadística y Geografía (INEGI) (2021). Uso del suelo y vegetación, escala 1:250000, serie VII (continuo nacional). INEGI. México.

Instituto Nacional de Estadística y Geografía (INEGI) (2023). División política municipal, 1:250000. 2023. INEGI. México.

Jabbar, H. K., Hamoodi, M. N., & Al-Hameedawi, A. N. (2023). Urban heat islands: a review of contributing factors, effects and data. In IOP Conference Series: Earth and Environmental Science IOP Publishing, 1129, 012038. https://doi.org/10.1088/1755-1315/1129/1/012038

Jain, S., Sannigrahi, S., Sen, S., Bhatt, S., Chakraborti, S., & Rahmat, S. (2020). Urban heat island intensity and its mitigation strategies in the fast-growing urban area. Journal of Urban Management, 9(1), 54-66. https://doi.org/10.1016/j.jum.2019.09.004

Javadi, R., & Nasrollahi, N. (2021). Urban green space and health: The role of thermal comfort on the health benefits from the urban green space; a review. Building and Environment, 202, 108039. https://doi.org/10.1016/j.buildenv.2021.108039

Kafy, A. A., Rahman, M. S., Islam, M., Al Rakib, A., Islam, M. A., Khan, M. H. H., Sikdar, M. S., Sarker, M. H. S., Mawa, J., & Sattar, G. S. (2021). Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, 64, 102542. https://doi.org/10.1016/j.scs.2020.102542

Kalkstein, L. S., Eisenman, D. P., de Guzman, E. B., & Sailor, D. J. (2022). Increasing trees and high-albedo surfaces decreases heat impacts and mortality in Los Angeles, CA. International Journal of Biometeorology, 66(5), 911-925. https://doi.org/10.1007/s00484-022-02248-8

Kunda, J. J., Gosling, S. N., & Foody, G. M. (2024). The effects of extreme heat on human health in tropical Africa. International Journal of Biometeorology, 68(6), 1015-1033. https://doi.org/10.1007/s00484-024-02650-4

Ladan, T. A., Ibrahim, M. H., Ismail, M. I. M., & Ansari, M. (2023). The potential of urban green infrastructure in mitigating urban heat islands in the semi-arid regions. International Journal of Academic Research in Business and Social Sciences, 13(6). https://doi.org/10.6007/ijarbss/v13-i6/17392

Liu, L., & Zhang, Y. (2011). Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sensing, 3(7), 1535-1552. https://doi.org/10.3390/rs3071535

Liu, W., Jia, B., Li, T., Zhang, Q., & Ma, J. (2022). Correlation analysis between urban green space and land surface temperature from the perspective of spatial heterogeneity: a case study within the sixth ring road of Beijing. Sustainability, 14(20), 13492. https://doi.org/10.3390/su142013492

Maharjan, M., Aryal, A., Shakya, B. M., Talchabhadel, R., Thapa, B. R., & Kumar, S. (2021). Evaluation of urban heat island (uhi) using satellite images in densely populated cities of south asia. Earth, 2(1), 86-110. https://doi.org/10.3390/earth2010006

Medeiros, A. S. S., Calderaro, G., Guimarães, P. C., Magalhaes, M. R., Morais, M. V. B., Rafee, S. A. A., Ribeiro, I. O., Andreoli, R. V., Martins, J. A., Martins, L. D., Martin, S. T., & Souza, R. A. F. (2017). Power plant fuel switching and air quality in a tropical, forested environment. Atmospheric Chemistry and Physics, 17(14), 8987-8998. https://doi.org/10.5194/acp-17-8987-2017

Mekonnen, G. T., Berlie, A. B., Anteneh, M., & Addisu, S. (2025). Surface urban heat island intensity and urban utility consumption: impact analysis and projections. The Scientific World Journal, 2025(1), 3250112. https://doi.org/10.1155/tswj/3250112

Montaner-Fernández, D., Morales-Salinas, L., Sobrino, J., Cárdenas-Jirón, L., Huete, A., Fuentes-Jaque, G., Pérez-Martínez, W., & Cabezas, J. (2020). Spatio-temporal variation of the urban heat island in Santiago, Chile during summers 2005-2017. Remote Sensing, 12, 3345. https://doi.org/10.3390/rs12203345

Montón-Chiva, E., & Quereda-Sala, J. (2024). Thermal behaviour of different land uses and covers in the urban environment of the Spanish Mediterranean based on landsat land surface temperature. Urban Science, 8, 147. https://doi.org/10.3390/urbansci8030147

Mudede, M. F., Newete, S. W., Abutaleb, K., & Nkongolo, N. (2020). Monitoring the urban environment quality in the city of Johannesburg using remote sensing data. Journal of African Earth Sciences, 171, 103969. https://doi.org/10.1016/j.jafrearsci.2020.103969

Naim, M. N. H., & Kafy, A-A. (2021). Assessment of urban thermal field variance index and defining the relationships between land cover and surface temperature in Chattogram city: a remote sensing and statistical approach. Environmental Challenges, 4, 100107. https://doi.org/10.1016/j.envc.2021.100107

Najafzadeh, F., Mohammadzadeh, A., Ghorbanian, A., & Jamali, S. (2021). Spatial and temporal analysis of surface urban heat island and thermal comfort using landsat satellite images between 1989 and 2019: A case study in Tehran. Remote Sensing, 13(21), 4469. https://doi.org/10.3390/rs13214469

Navarro-Estupiñan, J., Robles-Morua, A., Díaz-Caravantes, R., & Vivoni, E. R. (2020). Heat risk mapping through spatial analysis of remotely-sensed data and socioeconomic vulnerability in Hermosillo, México. Urban Climate, 31, 100576. https://doi.org/10.1016/j.uclim.2019.100576

Nieuwenhuijsen, M. (2021). New urban models for more sustainable, liveable and healthier cities post covid19; reducing air pollution, noise and heat island effects and increasing green space and physical activity. Environment International, 157, 106850. https://doi.org/10.1016/j.envint.2021.106850

Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban climates. Cambridge University Press.

Parastatidis, D., Mitraka, Z., Chrysoulakis, N., & Abrams, M. (2017). Online global land Surface temperatura estimation from Landsat. Remote Sensing, 9(12), 1208. https://doi.org/10.3390/rs9121208

Parker, J. (2021). The Leeds urban heat island and its implications for energy use and thermal comfort. Energy and Buildings, 235, 110636. https://doi.org/10.1016/j.enbuild.2020.110636

Peralta, M. A. C., & Sánchez, L. G. R. (2023). Antropización del paisaje de la Zona Metropolitana del Valle de Toluca. Punto Cunorte, (16), 13-42. https://doi.org/10.32870/punto.v1i16.163

Pradipta, E. (2018). Correlation between trees and microclimate on a certified green building (case study in Wisma Subiyanto, Jakarta). In E3S Web of Conferences. EDP Sciences 67, 04014. https://doi.org/10.1051/e3sconf/20186704014

QGIS.org. (2023). QGIS Geographic information system (version 3.34.2). Open Source Geospatial Foundation. https://qgis.org

Quiñones U. M. (2022). Islas de calor urbanas: un fenómeno poco estudiado en México. Desde El Herbario CICY, 14, 178–186, 2022. http://cicy.repositorioinstitucional.mx/jspui/handle/1003/2900

Restrepo, L. F., & González, J. (2007). De Pearson a Spearman. Revista Colombiana de Ciencias Pecuarias, 20(2), 183-192. https://doi.org/10.17533/udea.rccp.324135

Rivera, E., Antonio-Némiga, X., Origel-Gutiérrez, G., Sarricolea, P., & Adame-Martínez, S. (2017). Spatiotemporal analysis of the atmospheric and surface urban heat islands of the Metropolitan Area of Toluca, Mexico. Environmental Earth Sciences, 76, 1-14. https://doi.org/10.1007/s12665-017-6538-4

Romero-Aravena, H., & Peña-Araya, M. (2006). Relación espacial y estadística entre las islas de calor de superficie, coberturas vegetales, reflectividad y contenido de humedad del suelo, en la ciudad de Santiago y su entorno rural. Repositorio institucional de la Universidad de Chile. https://repositorio.uchile.cl/handle/2250/118067

Romero-Dávila, S., Morales-Méndez, C. C., & Antonio-Némiga, X. (2011). Identificación de las islas de calor de verano e invierno en la ciudad de Toluca, México. Revista de Climatología, 11, 1-10. https://climatol.eu/reclim/reclim11a.pdf

Rosas-Martínez, M. D., & Adame-Martínez, S. (2025). Islas de calor urbanas superficiales en Toluca y Zinacantepec, Estado de México en 2022. Vivienda y Comunidades Sustentables, 17, 9-24. https://revistavivienda.cuaad.udg.mx/index.php/rv/article/view/299

Salamanca, F., Georgescu, M., Mahalov, A., Moustaoui, M., & Wang, M. (2014). Anthropogenic heating of the urban environment due to air conditioning. Journal of Geophysical Research: Atmospheres, 119(10), 5949-5965. https://doi.org/10.1002/2013JD021225

Sangiorgio, V., Fiorito, F., & Santamouris, M. (2020). Development of a holistic urban heat island evaluation methodology. Scientific Reports, 10(1), 17913. https://doi.org/10.1038/s41598-020-75018-4

Secretaría de Desarrollo Agrario, Territorial y Urbano (SEDATU) (2018). Delimitación de las Zonas Metropolitanas de México 2015. https://www.gob.mx/cms/uploads/attachment/file/305634/Delimitacion_Zonas_Metropolitanas_2015.pdf

Sejati, A. W., Buchori, I., & Rudiarto, I. (2019). The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region. Sustainable Cities and Society, 46, 101432. https://doi.org/10.1016/j.scs.2019.101432

Sorto, E. J. P. (2020). Impacto del cambio climático en la salud de El Salvador. Crea Ciencia Revista Científica, 12(2), 64-78. https://doi.org/10.5377/creaciencia.v12i2.10171

Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A. J., Li, F., & Chen, H. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54, 75-84. https://doi.org/10.1007/s00484-009-0256-x

Tan, J. K., Belcher, R. N., Tan, H. T., Menz, S., & Schroepfer, T. (2021). The urban heat island mitigation potential of vegetation depends on local surface type and shade. Urban Forestry & Urban Greening, 62, 127128. https://doi.org/10.1016/j.ufug.2021.127128

United Nations Conference on Trade and Development (ONU) (2023). Handbook of statistics 2023. https://unctad.org/publication/handbook-statistics-2023

US Environmental Protection Agency (USEPA) (2008). Urban Heat Island Basics. In US Environmental Agency, Reducing Urban Heat Islands: Compendium of Strategies (pp. 1-178). US Environmental Agency: Washington, D.C., USA, 2008. https://www.epa.gov/sites/production/files/2017-05/documents/reducing_urban_heat_islands_ch_1.pdf

U.S. Geological Survey (USGS) (2023). Landsat 9. https://www.usgs.gov/landsat-missions/landsat-9

Villanueva-Solís, J., Ranfla, A., & Quintanilla-Montoya, A. L. (2013). Isla de calor urbana: modelación dinámica y evaluación de medidas de mitigación en ciudades de clima árido extremo. Información Tecnológica, 24(1), 15-24. https://doi.org/10.4067/S0718-07642013000100003

Vujovic, S., Haddad, B., Karaky, H., Sebaibi, N., & Boutouil, M. (2021). Urban heat island: Causes, consequences, and mitigation measures with emphasis on reflective and permeable pavements. CivilEng, 2(2), 459-484. https://doi.org/10.3390/civileng2020026

Wang, L., Gu, K., & Dong, D. (2022). A study on the strategies of park city construction of chengdu from the perspective of urban heat island mitigation. Environmental Science & Sustainable Development, 7(1), 91-104. https://doi.org/10.21625/essd.v7i1.869

Ward, K., Lauf, S., Kleinschmit, B., & Endlicher, W. (2016). Heat waves and urban heat islands in Europe: A review of relevant drivers. Science of the Total Environment, 569, 527-539. https://doi.org/10.1016/j.scitotenv.2016.06.119

Yang, Y., Song, F., Ma, J., Wei, Z., Song, L., & Cao, W. (2022). Spatial and temporal variation of heat islands in the main urban area of Zhengzhou under the two-way influence of urbanization and urban forestry. PloS One, 17(8), e0272626. https://doi.org/10.1371/journal.pone.0272626

Yin, Z., Liu, Z., Liu, X., Zheng, W., & Yin, L. (2023). Urban heat islands and their effects on thermal comfort in the US: New York and New Jersey. Ecological Indicators, 154, 110765. https://doi.org/10.1016/j.ecolind.2023.110765

Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in carbon capture (pp. 3-28). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819657-1.00001-3

Yuan, S., Ren, Z., Shan, X., Deng, Q., & Zhou, Z. (2023). Seasonal different effects of land cover on urban heat island in Wuhan’s metropolitan area. Urban Climate, 49, 101547. https://doi.org/10.1016/j.uclim.2023.101547

Zhang, H., Qi, Z. F., Ye, X. Y., Cai, Y. B., Ma, W. C., & Chen, M. N. (2013). Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Applied Geography, 44, 121-133. https://doi.org/10.1016/j.apgeog.2013.07.021

Zhang, Y., Yu, T., Gu, X., Zhang, Y. X., & Chen, L. F. (2006). Land surface temperature retrieval from CBERS-02 IRMSS thermal infrared data and its applications in quantitative analysis of urban heat island effect. National Remote Sensing Bulletin, 10(5), 789. https://doi.org/10.11834/jrs.200605117

Descargas

Publicado

15-10-2025

Cómo citar

Sánchez-Hernández, M., Pérez-Suárez, M., Valdez Lazalde, J. R., Arteaga-Reyes, T. T., & Ramírez-Albores, J. E. (2025). Variación espacio-temporal de las islas de calor como determinante del confort térmico urbano en la Zona Metropolitana del Valle de Toluca, México. Investigaciones Geográficas. Recuperado a partir de https://www.investigacionesgeograficas.com/article/view/29684

Número

Sección

Artículos